Hydrologic Similarity Analysis by Unsupervised Classification of watershed's soft data Received from the SWAT Model.

Yeganantham Dhanesh¹, Francisco Olivera Raghavan Srinivasan*²

Department of Civil Engineering, Texas A&M University
Spatial Sciences Laboratory, Texas A&M University.

Use of Grouping hydrologicaly similar Watersheds

- Predictions on ungagued basins
- Calibration of large watersheds
 - In both the cases few watersheds are calibrated and the parameters are to be transferred to a hydrologicaly similar watershed.

Study-Area

Upper- Mississippi watershed

Area: 2,981,076 km²

Discharge: Avg: 593,000 CFS Max: 3,065,000 CFS Min: 159,000 CFS

Approach

 Fuzzy c means clustering of the SWAT model's uncalibrated output.

Variables used for Fuzzy c means clustering

* 8- Variables

- * Mean and Standard deviation of
 - * Precipitation
 - * Surface Runoff
 - * GW Contribution
 - * Evapotranspiration

These variables where taken for the initial analysis of the clustering technique to check the effect of the size of the sub-basins, scaling of the variable values and the effect of precipitation variable in the clustering analysis.

Effect of the Size of the sub-basins on the clustering

Mean and Standard deviation of Mean and Standard deviation of values for all years

values for all years

Effect of rescaling of the variables on the clustering

Variables used without rescaling

Variables were rescaled from 1-100 for clustering

Effect of precipitation as a variable in clustering

Rescaled mean values of variables divided by pcp

Rescaled mean values of variables divided by pcp

sensitivity of variables used for clustering

Variables used for sensitivity testing

- * Area of the watershed
- Precipitation
- * Snow melt
- Potential Evapotranspiration
- * Evapotranspiration
- * Soil Water
- Percolation
- * Surface Discharge
- * Ground Water Contribution

Sensitivity of Variables used-Identified by removing one variable at a time from classification

Validation of the methodology

If the Mississippi river should be divided based on the land use-It should be looking something similar to this

Comparison of clustering with the classification based on the rainfall-runoff ratio

Fuzzy-C- means clustered

Runoff/Rainfall ratio of the subbasins

Future improvements planned for improving the methodology.

- The subgroups within the sub-basin at the hru level will be considered.
- The flow data will be considered only for the high flow seasons for the clustering.
- * The lag between the rainfall and the runoff will be considered for the clustering analysis.
- The percentage split of the rainfall into various water budget components can be considered for the clustering.

Thank-You