Is Site-specific APEX Calibration Necessary for Field scale BMP Assessment ?

> Anomaa Senaviratne¹ Claire Baffaut² John. A. Lory¹and Ranjith Udawatta³

¹ Plant Science Division, University of Missouri, ²USDA-ARS Cropping System and Water Quality Unit, ³ Center for Agroforestry, University of Missouri,

Agricultural Policy Environmental eXtender (APEX)

- Large scale watershed simulations (= SWAT model).
- Best management practices (BMPs, structural) represented virtually and empirically.

 Capability to route sediment nutrient and other pollutants through different landscape units.

- Plot / field / farm scale simulations.
- Structural BMPs as separate subarea units similar to their physical existence.

Parameterization, Validation and Scenario analysis

- Appropriate parameterization is essential for reliable prediction for BMPs;
 - Measurable parameters:
 - Watershed characteristics topography, soil, land-use / structural BMPs and management
 - Parameters needed to be decided:
 - >100 global parameter values
 - the equations to be used for major hydrological processes: runoff, peak flow rate, erosion, evapotranspiration – Control file
 - and the rates and threshold values Parameter file

Parameterization, Validation and Scenario analysis

- Global parameter values needed to be decided:
 - Best professional judgment based on experience, previous findings.
 - Use a calibration & validation process using measured data.
 - The results might again vary with availability of data:
 - Crop yield, flow, sediment, nutrient etc.,
 - Daily /event/monthly/yearly,
 - Site specific calibration and validation,
 - Site specific validation only,
 - Calibrate on one site and validate on another site.
 - Different sets of parameters may be possible.
 - Are all of these good enough for BMP assessments ?

Objectives

 Evaluate and compare two off-site specific and one site-specific calibrated parameter sets of the APEX model on a validation watershed.

 Compare their long-term predictions for BMPs of the validation watershed with terraces, a grass waterway and winter cover crop (winter wheat).

First and Second Calibration & Validation

First and second off-site param. sets Center WS, Novelty, Knox county, MO (4.44 ha), no-till, corn-soybean, grass waterway, claypan soils. **Local validation** West WS (3.16 ha).

 Site specific contour maps, land-use maps and measured soil data were available for the model buildup.

Third Calibration & Validation

Third site parameter set

Chariton 1, MO, (2.69 ha), field-cultivated, corn soybean, **no-BMP** (2012-2013, 10 events).

 Validation of all three
 Chariton 2, MO,(31.7 ha), field-cultivated, terraced, a grass waterway, and winter cover-crop- winter wheat
 (2011-2013, 15 events).

 Publicly available databases for topography, landuse (USGS), and soil data (SSURGO) were used for the model buildup.

Tools of Calibration

- Automated calibration tools;
 - Parameter Sensitivity (PARSEN) :
 -Find most sensitive parameters
 - Parameter Optimization (PAROPT) :
 - -Find optimal combination of most sensitive parameters
- All parameter sets were calibrated for crop yields, event runoff, sediment and TP loads.
- Statistics used to compare measured vs predicted:

Performance indicators	Perfect	Acceptable thresholds			
		Monthly†	Event		
Coefficient of determination (<i>r</i> ²)	1	≥ 0.6	≥ 0.5		
Nash-Sutcliffe Coefficient (NSC)	1	≥ 0.5	≥ 0.4 for runoff ≥ 0.3 for sediment & and TP		
Percent bias (Pbias)	0	± 25% for runoff, ± 55% for sediment, ± 70% for TP			

Results of Calibration and Validation

Parameter set		Event runoff			Event sediment load			Event TP load		
		r² ≥0.5	NSC ≥0.3	Pbias ±25%	R ² ≥0.5	NSC ≥0.3	Pbias ±55%	R ² ≥0.5	NSC ≥0.3	Pbias ±70%
First Pre-buffer	Cal.	0.87	0.85	-7	0.55	0.45	-48	0.64	0.57	12
	LV	0.88	0.77	21	0.43	0.42	-6	0.63	0.48	37
Second Post-buffer	Cal.	0.82	0.79	-4	0.27	0.13	13	0.65	0.52	-14
	LV	0.75	0.74	-4	0.29	0.24	-2	0.63	0.55	11
Third Chariton 1	Cal.	0.88	0.86	-18	0.87	0.74	10	0.92	0.64	33
Validation										
First	V	0.73	0.31	6	0.51	0.49	23	0.88	0.28	70
Second	V	0.80	0.39	-20	0.37	0.27	46	0.94	0.28	71
Third	V	0.78	0.57	18	0.53	0.37	54	0.90	0.50	67

Cal.- Calibration, LV- Local validation, V-Validation by the Chariton 2

Average Annual Output for 30 year BMP Scenarios

- All three parameter sets showed similar responses for BMPs.
- Cover crop mostly reduced runoff, Terraces mostly reduced sediment and TP.

GWW-Grass waterway, CC- Cover crop, Terr - Terraces

30 year BMP Scenario analysis

- Relative reductions by BMP compared to no-BMP scenario.
- Similar responses among the three parameter sets (± 12%).

GWW-Grass waterway, CC- Cover crop, Terr - Terraces

Conclusions

- Off-site parameter sets reliable for comparative assessments of BMPs at field scale.
- Site specific calibration is necessary for quantifying the benefits of BMPs at field scale.
- Site specific parameter set developed based on a small watershed using publicly available data and with no-BMP, quantified the BMP benefits of a 12 times larger watershed.
- Monitoring is continuing on the Chariton sites and Additional data will be available in the future.
- Efforts toward a regional parameter set are also ongoing with additional sites across several states in the Midwest.

Heartland Region P-Index Conservation Innovation Grants (CIG)

USDA-NRCS grant for Mississippi River Basin Healthy Watersheds Initiative (MRBI)

Center for Agroforestry, University of Missouri

