

UVirginiaTech

Evaluating weather observations and the CFSR as inputs for hydrologic modeling in the Hawaiian Islands

Kim Falinski, Dan Auerbach, Kirsten Oleson, Zachary M. Easton, Daniel R. Fuka

UH at Manoa, EPA, Virginia Tech, The Nature Conservancy

This material is based on work supported by the NSF under Grant No. 1343802

Summary

What is GHCN and CFSR Review of Past Results

- Cont. US & Ethiopia
- Ethiopia
- Puerto Rico
- This study: Hawai'i, USA

What is GHCN-Daily

75000 stations

Wirginia Tech

- 180 countries and territories
- Max and Min temperature, total daily precipitation, snowfall, and snow depth
- ~ Two thirds of the stations precipitation only.
- Record length and period vary by station less than year to 175+ years.

Short Term Forecasts

Often times correlate better with electrical load for cities better than weather station data.

- Every 6 hours
- Cover the entire world

Existing long term archives of past forecasts for model improvement

Basic Concept

CFSR is a 6 hour Global Forecasting System 1979 – today

The error of using a weather station will converge with the error of weather forecast as weather station

UVirginiaTech

Biological Systems Engineering

Continental USA and Ethiopia

SWAT is used as a calibrated response function:

flow=SWAT(wx,a)

Nearby GHCN WX Stations CFSR Interpolated to center of basin Optimize flow with R DEoptim

*-CFSR at center of watershed, O-WX guage data, X-CFSR interpolated to WX guage location

Andreas Cr., Palm Springs, CA NSE for CFSR and Weather Gage

While CFSR is best, second closest station is better than closest. This weather station appears to report at 4pm local time. ToC issue? Still lower confidence though.

*-CFSR at center of watershed, O-WX guage data, X-CFSR interpolated to WX guage location

Continental USA & Ethiopia

Name	Location	CFSR	Closest Met ¹	Closest Met	Best Met ²	Best Met
		Center	Weather	Distance	Weather	Distance
Town Br.	Hobart, NY, USA	.63	NA	NA	.52	NA
Gumera	Bahir Dar, Ethiopia	.71	NA	NA	.68	NA
Andreas Cr.	Palm Springs, CA, USA	.71	.36	9km	.67	9km
Tesuque Cr.	Santa Fe, NM, USA	.49	.08	15km	.34	45km
Cross R.	Cross R., NY, USA	.67	.63	15km	.63	15km

Closest meteorological station to the center of the watershed.

² Best performing meteorological station weather, or combination of weather stations in the case of Town Brook and Gumera.

UVirginiaTech

Ethiopia Study 2, Dile and Srinivasan

Traditional SWAT modeling project, monthly

- Initialize using Ethiopia MOWR WX Stns.
- Initialize using Closest Gridded CFSR

Un-Calibrated

	Con W	ventional Teather	CFSR Weather		
Rivers	NSE	PBIAS	NSE	PBIAS	
Gilgel Abay	0.87	11.05	0.79	-3.83	
Gumera	0.84	9.99	0.75	15.09	
Rib	-0.58	-115.69	-0.90	-110.67	
Megech	0.49	-29.08	-1.91	-131.88	

Puerto Rico

Tropical, Montane, Island Extremely Data Rich SWAT is used as a calibrated response function:

flow=SWAT(wx,a)

Nearby GHCN WX Stations CFSR Interpolated to center of basin Optimize flow against WX with R DEoptim

Hawaii

Most Exciting Hydrology EVER!

Two Islands

- Kauai older soils
- Hawaii/Big Island newest soils

SWAT used as calibrated response function:

flow=SWAT(wx,a)

Nearby GHCN WX Stations

CFSR Interpolated to center of basin

Optimize flow against WX with R DEoptim

Weather Station by Distance

0.6

0.2

Unvent the Future

Watershed Science and Engineering

Hawai'i Summary

Closest weather is not best 8 out of 14 times Newer, high Ksat soils have flashy'er response

Convergence is ~30-45km

Current Distance Convergence

Location	Distance
Continental USA: NY, NM, CA	~10km
Ethiopia, Upper BNB	~30km
Tropical Montane Gulf	25-30km
Hawaii Tropical Young	30-45km

Discussion

Closest weather station is not always your best weather station CFSR is NOT a competing product Quick minute worst case scenario Fallback for ungaged basins 15 minute first look

Concluding Remark

There are many many places with really good weather data to force watershed models...

This project is trying to provide easy to access, continuous, representative weather data for the other 90% of the world