Modeling Sediment and Nutrient Loads Input to Chesapeake Bay and Effects of Agricultural Conservation Practices on Water Quality

C. Santhi and CEAP National Assessment Team Texas A&M University System, Temple, Texas

Lee Norfleet Jay Atwood Mari-Vaughn Johnson Tim Dybala Chris Lester, Maria

Jeff Arnold Mike White

Tom Gerik Jimmy Williams Mauro Di Luzio C. Santhi Kannan Susan Wang

CEAP/SWAT/APEX National Modeling System

Presentation Overview

- Chesapeake Bay Calibration and Validation
- Determine the Sediment and Nutrient Loads input to the Chesapeake Bay
- Determine the Major Sources of Sediment and Nutrients in the Chesapeake Bay Watershed
- Determine the Off-site Benefits of Agricultural Conservation Practice Scenarios on Water
 Quality in the Chesapeake Bay Watershed

Chesapeake Bay

Largest estuary system in the US. Population: 17 Million Drainage Area: 177,346.5 km² Cropland and CRP : 10% U.S. Crop Sale and Corn: 2% Agriculture Production, Metropolitan Cities, Industries, Tourism, Fisheries

Source of sediment and nutrients to the Bay

Eutrophication–Low DO-Fish Kill

Specific Objectives

- Estimate the sediment and nutrient loads
 discharged to the Chesapeake Bay,
- 2) Determine the major sources of sediment and nutrients delivered to local waters in the Chesapeake Bay, and
- 3) Evaluate the effects of the current agricultural
 conservation and future conservation needs on water
 quality in the Chesapeake Bay.

Calibration Gages

Gauging Station Name	Gage	Hydrologic	Drainage
	ID	Unit Code	Area
	on Map		(km ²)
Susquehanna R. at Danville	S 1	02050107	29,060
Susquehanna R. at Harrisburg	S 2	02050305	62,419
Susquehanna R. at Conowingo	S 3	02070008	70,189
Potomac R at Little Falls	S 4	02080205	29,940
James R at Catersville, VA	S5	02080205	16,193

Calibration Results at the Gages

Loads Discharged from Chesapeake Bay Watershed to the Bay: Prediction and Validation

Major Sources of sediment and nutrients to local waters

Practices Simulated Within APEX

a) Structural Practices

In-field Practices for erosion control

- Contour Farming
- Strip Cropping
- Contour Buffer Strips
- Terraces
- Grass Terraces
- Tile Drain
- Grade Stabilization Structures
- Grassed Waterways
- Diversion

Edge of Field Practices for buffering

- Filter Strips
- Riparian Forest Buffers
- Riparian Herb. Cover
- Field Borders
- Vegetative Barrier

Wind Erosion Control Practices

- Windbreak / Shelterbelt
- Herbaceous Wind Barrier
- Hedgerow planting
- Cross Wind Practices

b) Cultural/Agronomical Management Practices Residue, tillage, nutrient, pesticide and irrigation management practices and cover crops

c) Long-term conservation cover

Conservation Practice Scenarios

Scenarios	Practice Details		
No Practice	No conservation practices on cropland		
Current Conservation Condition (Baseline)	Currently existing conservation practices on cropland		
Enhanced Nutrient Management on all under- treated cropland (ENMA)	Combinations of erosion control and nutrient management practices on under-treated cropland area; These areas have losses more than acceptable level.		
Background	Grass-Tree mix grown on cropland in stead of crops. No fertilizer or manure. No cultivated cropland contribution		
Chesapeake Bay A	Area	177,347 km ²	

Cropland & CRP Area

10 % 180,57 km²

11

Edge of Field Water Quality Benefits: Conservation Scenarios

No Practice			
Current Conservation Condition			
ENM C			
Current Conservation Reduction			
■ENMĂ Reduction			
ENMA			
Background			
12			

Instream Water Quality Benefits: Conservation Scenarios

Basin

Basin

Loads Discharged to Chesapeake Bay: SWAT Prediction and Proposed TMDL Targets

Conclusions

- About 6.9 million tonnes of sediment, 140, 500 metric tonnes of nitrogen and 6,850 metric tonnes of phosphorus loads were predicted to enter the Bay as per baseline conservation condition.
- Currently established practices on cropland reduced the sediment, nitrogen and phosphorus losses from edge of field by 54%, 27% and 58%, respectively.
- These practices also reduced the sediment, nitrogen and phosphorus loads entering the Chesapeake Bay by 16%, 12%, and 16%, respectively.
- Additional conservation treatment can help to further reduce the loads to the Bay and move towards meeting the proposed sediment and nutrient targets.

Conclusions

- A research methodology is developed for regional/large scale assessment using models and large databases.
 Researchers and modelers can adopt this.
- Tools available to study other emerging issues on eutrophication, hypoxia, algae blooms, climate change, future conservation programs, and restoration efforts.

Thank you !!!