Assessing the Impact of Alternative Management Strategies in a Dairy-dominated Agricultural Watershed Vulnerable to High Sediment and P Runoff

Alexis Heim, Paul Baumgart, Kevin Fermanich

Environmental Science and Policy Graduate Program – University of Wisconsin - Green Bay

2015 SWAT Conference – Purdue University

10/16/2015

Acknowledgments

Mr. Michael Finney with the Oneida Tribe

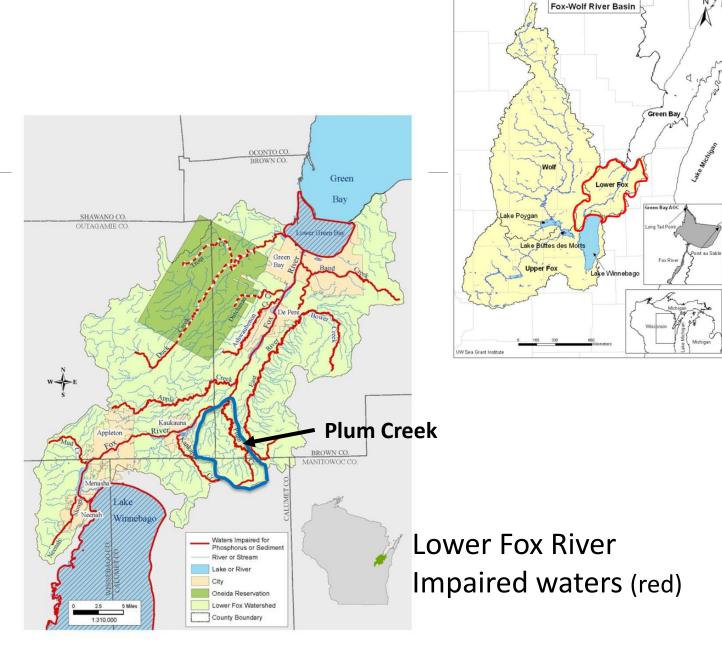
Arjo Wiggins Appleton

UW-Green Bay Lower Fox River Watershed Monitoring Program

NOAA Center for Sponsored Coastal Ocean Research Coastal Hypoxia Research Program

University of Michigan Water Center

United States Geologic Survey cooperative monitoring program

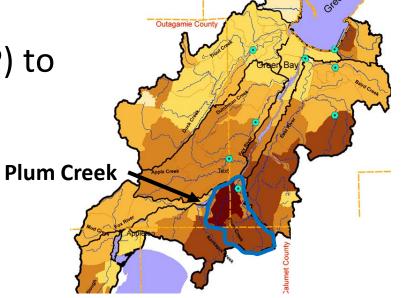

Outline

Project overview

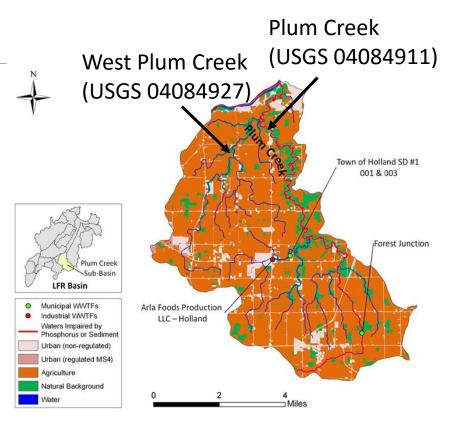
Calibration and Validation

BMP Applications

Summary


Study Site: Plum Creek Watershed

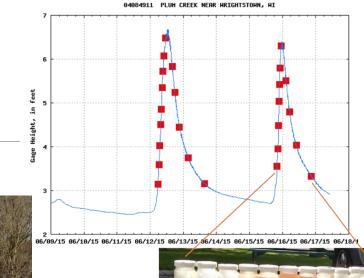
- 9,010 ha (90.1 km²)
- High density of intensive farming (76% ag.)
- Part of the Lower Fox River TMDL
- Highest contributor of sediment and phosphorus (P) to the Lower Fox River & the Bay of Green Bay
- WY 2011 2013 average yields (measured) TSS: 1.04 tons/ha
 - Total P: 2.00 kg/ha



Plum Creek Monitoring

Project Overview

- Simulate impacts of alternative management (BMPs) and climate projections on water quality
- Alternative management practices modeled at various implementation levels across watershed
 - reduced soil P (nutrient management)
 - increased conservation tillage
 - cover cropping
 - managed grazing


Outline

Project overview

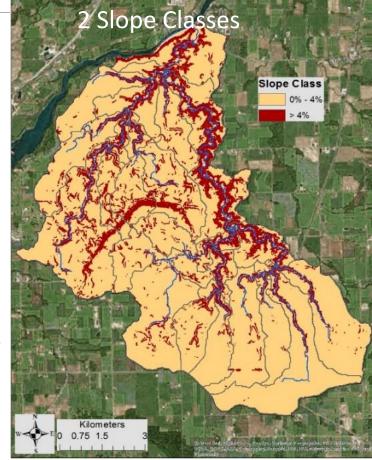
Calibration and Validation

BMP Applications

Summary

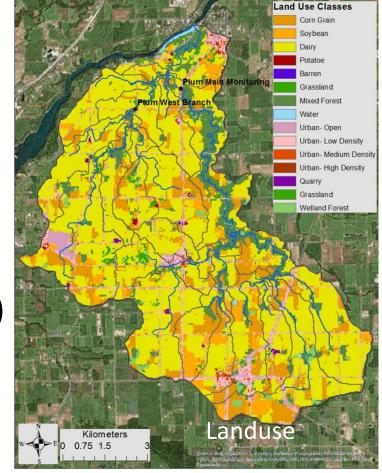
Modeling Methods – Data Inputs

o10 m x 10 m Digital Elevation Model

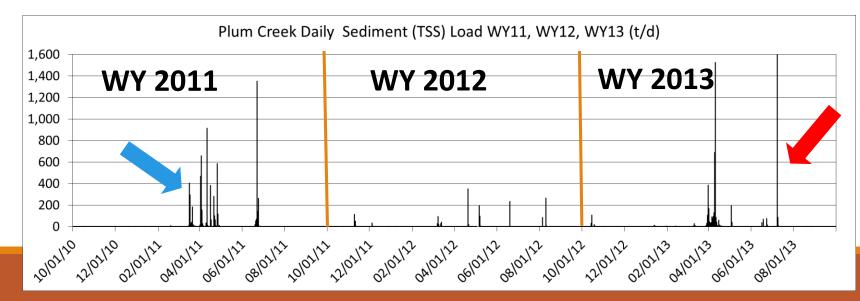

◦ Two Slope classes were defined: 0 – 4% and >4%

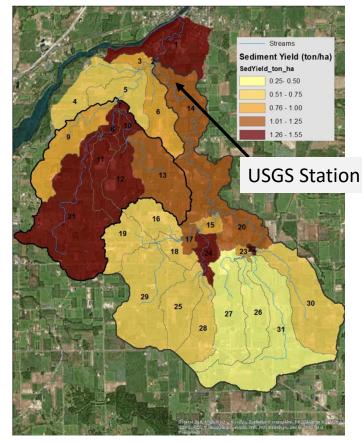
Soils input from SSURGO database

Most soil types were C class or poorly drained


Land use was derived from NASS Cropland Data Layers

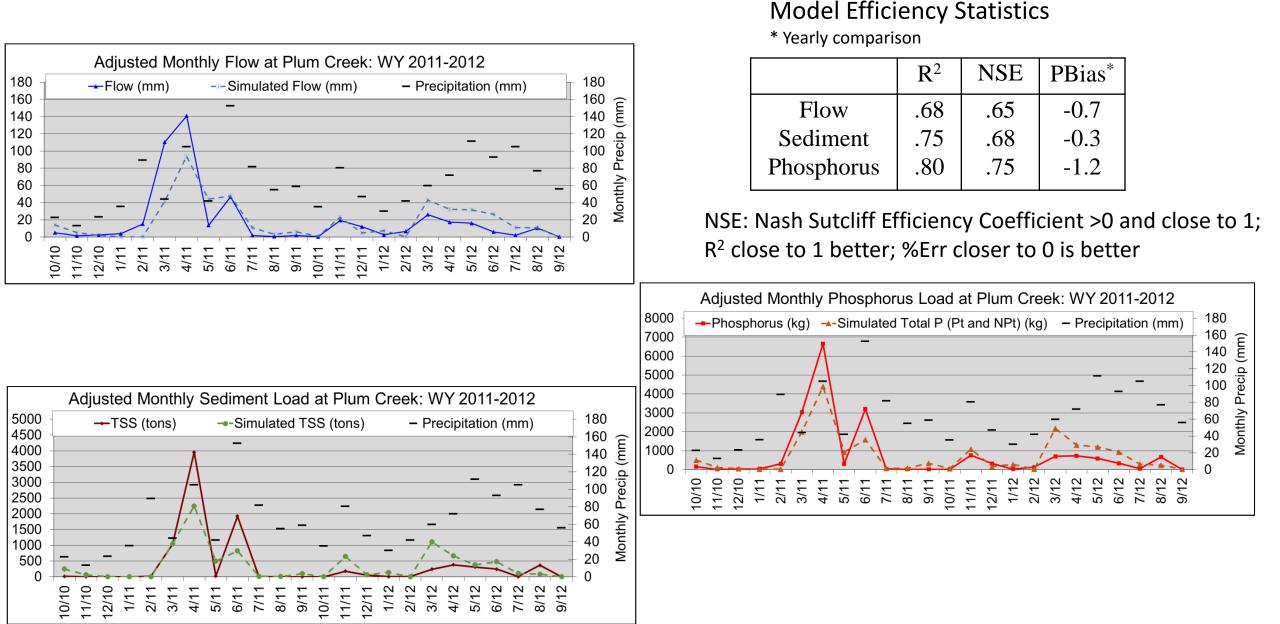
- 2006 2011 (dairy = any area with Alfalfa in 1 of 6 years)
- Initial Soil Test P = 40 ppm

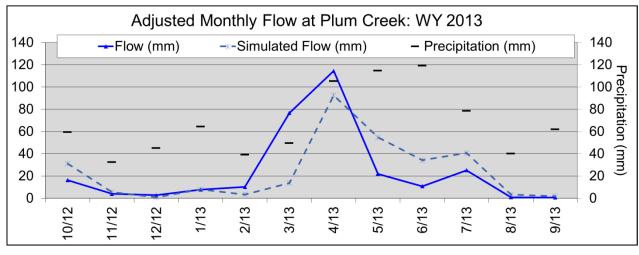

Modeling Methods – Land Management


- Three tillage options: Conventional till (moldboard), reduced till (chisel) and no-till
- Dairy rotation: 6 year rotation (55% of area) (18 HRUs)
 - Corn grain/silage mixed crop, Silage, Winter Wheat, Alfalfa (x3)
 - Manure applied before corn and winter wheat and topdressings on Alfalfa
- Cash grain rotation: 3 year rotation (21% of area) (9 HRUs)
 - Two years corn grain, one year soybean
 - Manure applications in fall of each year

Modeling Methods – Calibration & Validation

- Measured Daily Discharge, Sediment, and Phosphorus loads for 3 years at main branch with USGS cooperation
- Monthly loads used to calibrate and validate SWAT model
- 2 year calibration, 1 year validation



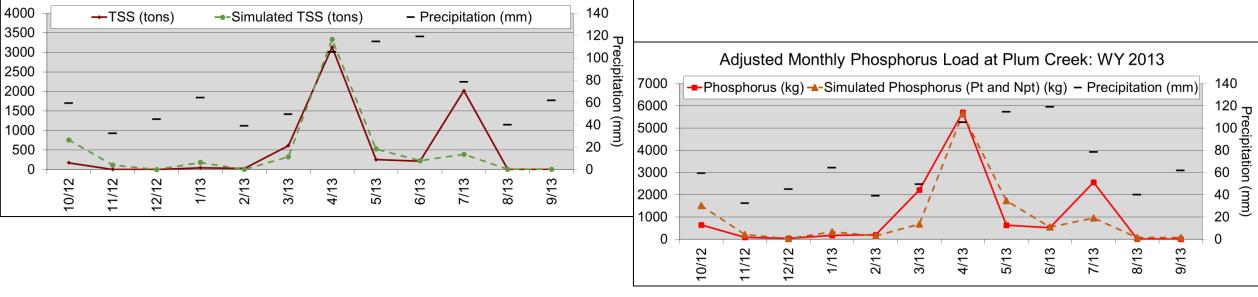

Modeled yields by subbasin

	SWAT Input	Description	Default	Calibrated
	Parameter			Value
Modeling Methods –	CN_Froz	Parameter for frozen soil adjustment on	0.000862	0.00001
Modeling Methods –		infiltration/runoff		
Parameterization	SFTMP	Snowfall temperature [ºC]	1	1.5
Γαιαπετεπεατισπ	SMTMP	Snow melt base temperature [ºC]	0.5	2.02
Chara daturalura calibrated (CN41NL DE	SMFMX	Melt factor for snow on June 21 [mm	4.5	2
 Crop.dat values calibrated (CMIN, BE, 		H2O/ºC-day]		
Harvest efficiencies) to meet yield goals	SMFMN	Melt factor for snow on December 21 [mm	4.5	0.1
That vest efficiencies/ to meet yield goals		H2O/ºC-day]		
	TIMP	Snow pack temperature lag factor	1	0.8
 Till.dat inputs altered to match local 	SNOCOVMX	Minimum snow water content that	1	10
		corresponds to 100% snow cover [mm]	4	
tilling operations	SURLAG	Surface runoff lag time [days]	4	0.5
	CN2	Initial SCS CN II value	70 - 91	72 - 90
mat inputs mirrorod providus modeling	USLE_C	Minimum value of USLE C factor for water	0.001 -	0.003-0.2
 .mgt inputs mirrored previous modeling 		erosion applicable to the land cover/plant.	0.5	
work and discussions w/ LCD	SPCON	Linear parameter for calculating the maximum amount of sediment that can be	0.0001	0.0008
WORK and discussions w/ LCD		re-entrained during channel routing		
	PRF	Peak rate adjustment factor for sediment	1	1.25
		routing in the main channel	-	1.23
	USLE P	USLE support practice factor	0 - 1	0.25
	_			
	PSP	Phosphorus sorption coefficient	0.4	0.7

Modeling Methods – Calibration WY 2011 - 2012

Modeling Methods – Validation WY 2013

Adjusted Monthly Sediment Load at Plum Creek: WY 2013

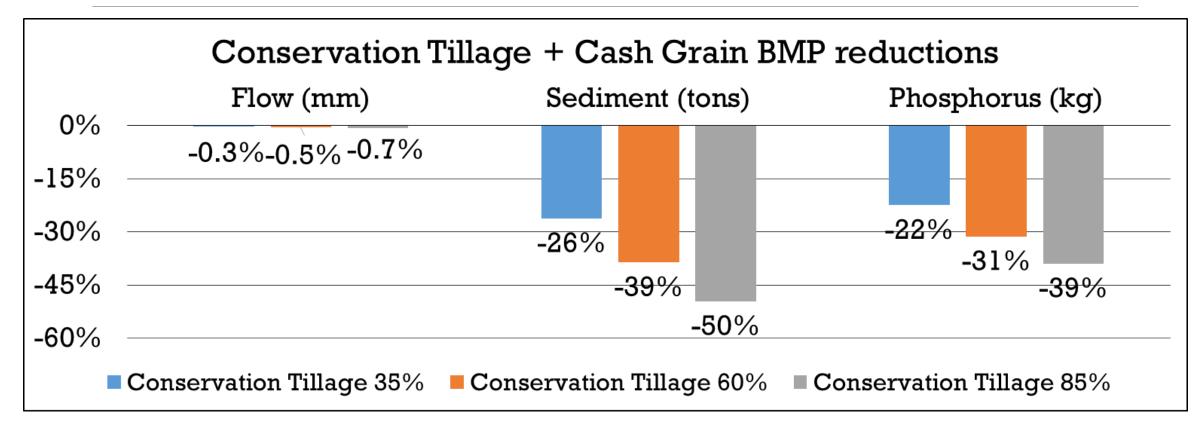


* Vearly comparison

	R ²	NSE	PBias*
Flow	.52	.51	-0.6
Sediment	.72	.71	-9.4
Phosphorus	.78	.78	-6.9

July 2013

- 4 day event July 8-11
- Contributed 23.6 mm of 25.1 mm monthly total
- Simulated Flow was OK, but Sed and P was understated

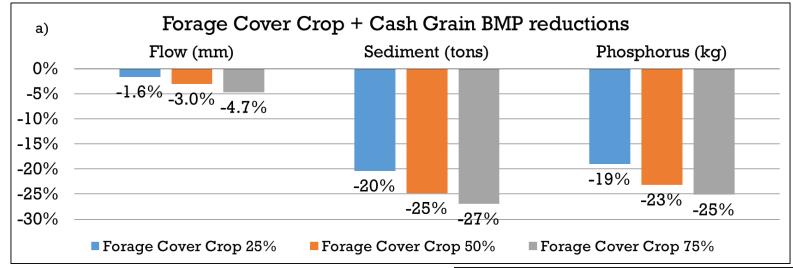

Outline

Project overview Calibration and Validation BMP Applications Summary

Alternative Management Practice Implementation-Conservation Tillage

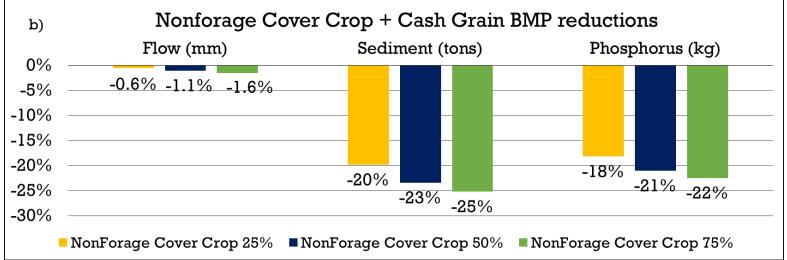
- Baseline scenario:
 - Conventional tillage at 90%, Reduced tillage at 10%, No-till tillage at 0%
- Increasing conservation tillage:
 - Curve number decreased, BIOMIX increased for no till, CMIN in crop.dat lowered for crops in reduced and no till
 - Areas multiplied by different fractions to return desired % area changes
 - E.g. 60% conservation tillage scenario of dairy acres:
 - Conventional tillage at 40%, Reduced tillage at 35%, No-till tillage at 25%

Alternative Management Practice Implementation-Conservation Tillage



* All results include Cash Grain BMPs (reduced STP, cover crops, conservation tillage)

Alternative Management Practice Implementation-Cover Cropping


	Practice Changed									
	Harvest date		Manure application		Manure application		CC Planting	Harvest of Cover Crop	Planting of cro	U
Crop – Cover Crop	Base	BMP	Base	BMP	ВМР	BMP	Base	BMP		
Soybeans -Nonforage Barley	Oct. 22nd	Oct. 8th	Full rate Fall	1/2 rate fall & spring	mid Oct.	Kill/ Leave residue	May 24th	May 24th		
Silage - Nonforage Barley	Oct. 8th	Sept. 1st	Full rate Fall	1/2 rate fall & spring	mid Sept.	Kill/ Leave residue	May 24th	May 24th		
Silage - Forage Rye	Oct. 8th	Sept. 1st	Full rate Fall	1/2 rate fall & spring	mid Sept.	Harvest in spring	May 24th	June 20th		

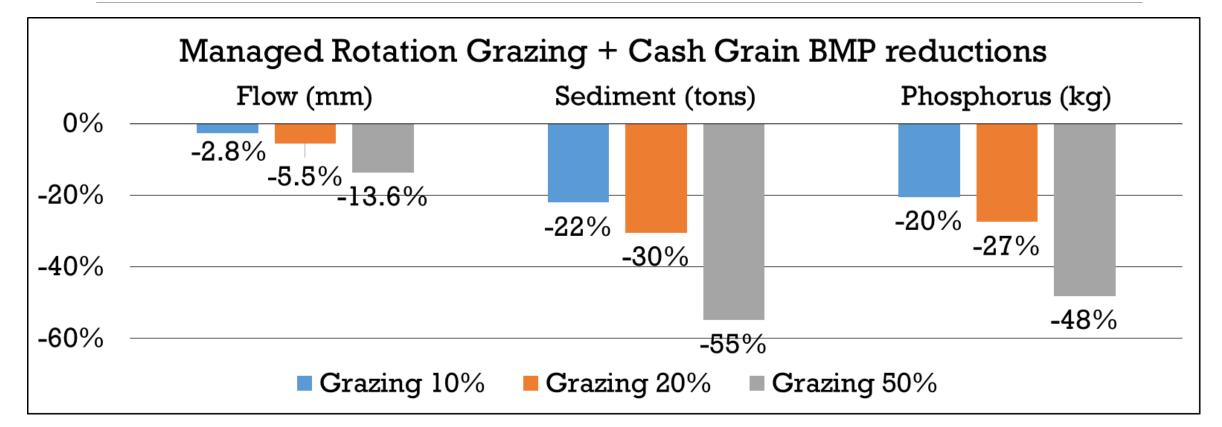
Alternative Management Practice Implementation-Cover Cropping

Three implementation levels on dairy acres: 25%, 50%, 75%

65%, 40%, & 15% stayed in conventional management.

Alternative Management Practice Implementation-Managed/Rotational Grazing

• Paddocks rotated every 30 days and each dairy phase (6) grazed for 5 days


Average consumption rate calculated as 4.5% of body weight for a 550 lb cow

Stocking rates from Adamski operations in Northeast Wisconsin

Manure applied during grazing was equivalent to dairy crop rotation

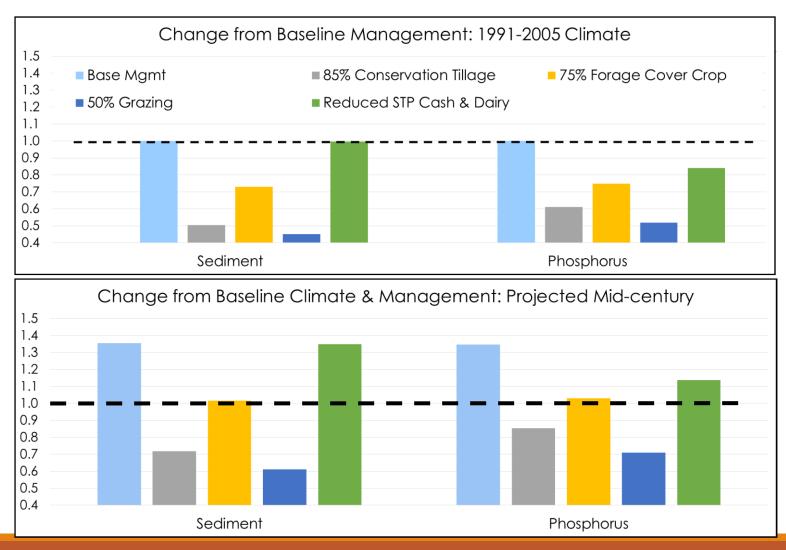
- Ratio of 2.2:1 consumption to manure deposition
- Other grazing literature applied about a 2.1:1 or 2.9:1 ratio of consumption to manure deposition (Pai, 2011 and Almendinger, 2010)

Alternative Management Practice Implementation-Managed/Rotational Grazing

Alternative Management Practice Implementation

Reduce Soil Test P – net result was a ~14% reduction in P export

• Previous Soil Test P work shows watershed average about 42 ppm


Jacobson, 2012; 9 Key Elements Plan by Outagamie County LCD for Plum/Kankapot

- Labile P (in .chm files) was parameterized at 40 ppm, 30 ppm, 20 ppm for top 3 layers
- BMP: Reduced to 25 ppm, 20 ppm, and 15 ppm to reflect 1970's STP levels

Combination scenarios incorporated various single BMPs

- Various levels of implementation
- **Results**: 32 75% reductions of TSS & 29 64% reductions of TP

How will alternative management perform under projected climate?

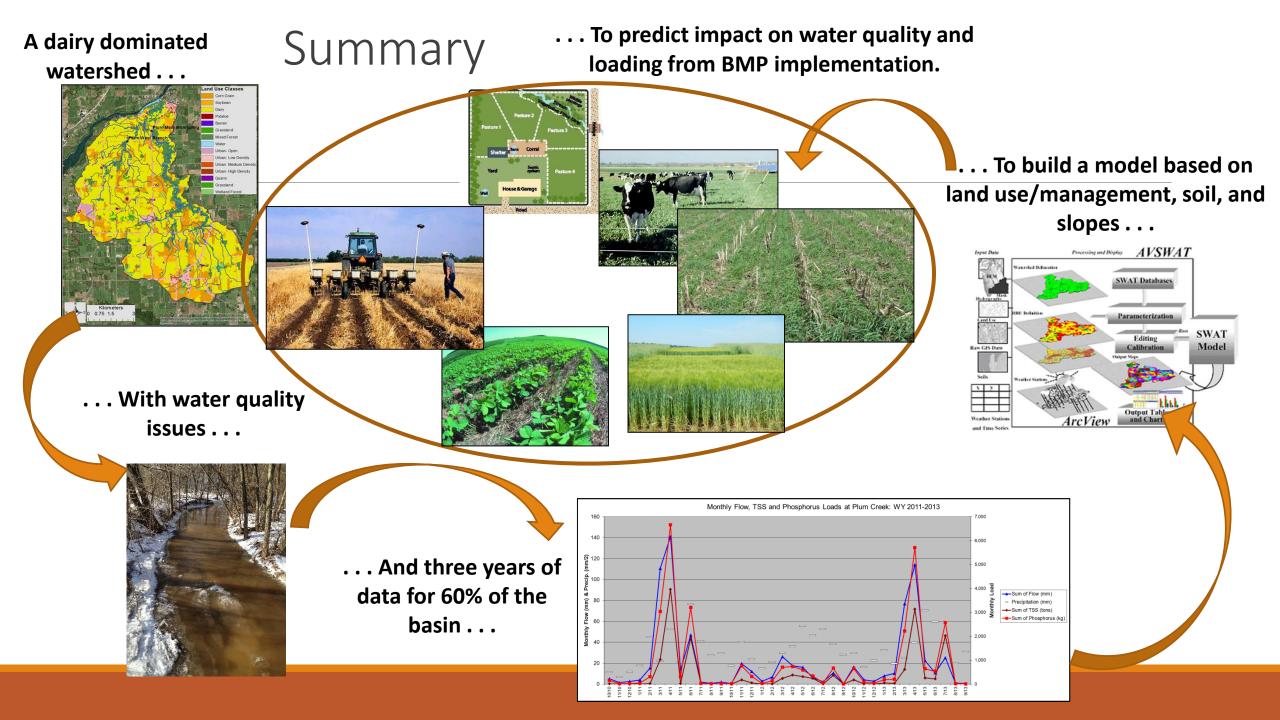
Downscaled, projected climate 2046-65. A1B emission scenario. **M**eteorological **R**esearch Institute Coupled Atmosphere–Ocean General Circulation Model, version 2.3.2 (D. Lorenz, Ctr Climate Research/WICCI, U. Wis.)

• CO₂ changed to 550 ppm

	Warmer/Wetter
Seasons	climate model
Winter	28%
Spring	10%
Summer	5%
Autumn	10%

	Change		
	Change	Min	
Seasons	Max °C	°C	
Winter (Dec-Feb)	+3.9	+4.8	
Spring (Mar-May)	+2.2	+2.5	
Summer (Jun-Aug)	+1.9	+2.5	
Autumn (Sep-Nov)	+2.3	+2.2	

Outline

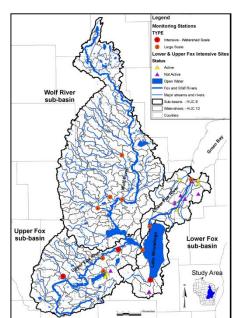

Project overview

Calibration and Validation

BMP Applications

Summary

And we found....


- The SWAT model was effectively applied to the Ag. dominant watershed
- To meet TMDL goals, ag system changes will be required
- Alternative practices have potentially significant impacts on Water Quality

		% Difference from Base Case		
BMP Combination	HRU management changes with %HRU of dairy management	Flow (mm)	Sediment (tons)	Phosphorus (kg)
Forage + Conservation Till Low Implementation	Conv/Reduced/No-till w. cover 80/15/5	-6.6%	-32.0%	-29.2%
Forage + Conservation Till High Implementation	Conv/Reduced/No-till w. cover 40/35/25	-7.6%	-49.7%	-41.0%
Forage + Graze Low Implementation	Graze/Reduced/No-till w. cover 20/55/25	-12.8%	-64.1%	-52.8%
Forage + Graze High Implementation Grazing + Forage Cover + Conservation Tillage +	Graze/Reduced/No-till w. cover 50/25/25	-19.1%	-74.8%	-63.7%
Baseline STP Grazing + Forage Cover + Conservation Tillage +	Graze/Reduced/No-till w. cover 33/33/34	-15.6%	-70.0%	-58.2%
Reduced STP	Graze/Reduced/No-till w. cover 33/33/34	-15.5%	-70.1%	-61.8%
Grazing + Reduced Till Low Implementation	Graze/Reduced till/ No-till at 10/65/25	-3.7%	-53.7%	-43.1%
Grazing + Reduced Till Moderate Implementation NonForage + Conservation Till Low	Graze/Reduced till/ No-till at 20/55/25	-6.6%	-58.4%	-47.7%
Implementation NonForage + Conservation Till High	Tillages w. cover 80/15/5	-2.1%	-29.4%	-25.6%
Implementation	Tillages w. cover 40/35/25	-2.6%	-47.3%	-37.6%
NonForage + Graze Low Implementation	Graze/Reduced/No-till w. cover 20/55/25	-8.4%	-61.3%	-49.6%
NonForage + Graze High Implementation Grazing +NonForage Cover + Conservation Tillage	Graze/Reduced/No-till w. cover 50/25/25	-16.3%	-73.3%	-62.0%
+ Baseline STP Grazing + NonForage Cover + Conservation	Graze/Reduced/No-till w. cover 33/33/34	-11.9%	-68.0%	-56.0%
Tillage + Reduced STP	Graze/Reduced/No-till w. cover 33/33/34	-11.8%	-68.2%	-60.5%

Future work....

 Knowledge gained about alternative management strategies in the Plum Creek model will be applied to other regions of the Green Bay watershed.

Thank you!

