

Evaluation of the two stage ditch as a best management practice A. Hodaj, L.C. Bowling, C. Raj, I. Chaubey

The concept of the two-stage ditch

Two-stage ditch:

- Stage 1 : main channel
- Stage 2 : flood plain bench

- Dissipates the energy of high flows by letting it spread on the benches.
- Allows the sediment to set on the benches instead of being transported downstream.
- Increases the interaction time of the water with the benches and the plants that grow in them.

Impact of the two-stage geometry on in-stream processes

- Studies have shown:
 - Increased bank stability
 - Increased denitrification rates on the benches of the twostage compared with the slopes of traditional ditches
 - Decreased nutrient concentrations from upstream to downstream

Why the need to model the two-stage ditch?

- Studies conducted have focused on two-stage ditches designed primarily for the purpose of increasing bank stability and maintaining a certain conveyance capacity.
- Field evaluation of the two-stage system is limited to certain stream reaches and specific cross-sectional dimensions.
- Representing the two-stage ditch in a physically-based model will allow evaluation of the potential of increased implementation of this practice.

Why SWAT?

- SWAT has been widely used to evaluate agricultural BMPs.
- SWAT has a channel water and nutrient routing scheme that is separate from the HRUs, which is essential for representing this in-stream practice.
- The use of sub-basins that drain to one particular reach, makes it ideal to look for a best location to implement a two-stage ditch.

Channel routing changes (channel geometry)

Changes made to the code (water routing)

 New calculations of cross-sectional area of flow and wetted perimeter

Flow rates and velocities

 Transmission losses are re-assigned from bank storage to a new HRU

Changes made to the code (sediment routing)

- New calculations of:
 - Bank Shear Stress
 - Potential Bank Erosion
 - Area ratio of water in flood plain to total cross sectional area
 - Sediment deposition rates

Channel routing changes (nutrient routing)

What goes into the new HRU?

- The new HRU has the same characteristics as an adjacent to the stream HRU but with a different management operation file.
- All the weather inputs that go into the HRUs of the subbasin.
- Transmission losses from the channel
- Soluble nutrients contained in the transmission losses
- Sediment that settles on the benches of the two-stage
- Sediment-bound nutrients from the sediment settling on benches

Channel routing changes (new parameters)

	· · · · ·		
Parameter	Definition	Input	Source of potential
name		File	values
W _{btm,bench}	Bottom width of the two-stage channel (m)	.rte	Data from surveying
Z_{bench}	The inverse of the slope for the banks of the two-stage channel	.rte	Data from surveying
tsd_hru	The new HRU created that represents the two-stage ditch benches	.rte	
ts_n	Manning's "n" value for the two- stage channel	.rte	Range: 0.025 – 0.065. Median value: 0.05
k_tsd	Effective hydraulic conductivity of the two-stage channel alluvium (mm/hr)	.rte	Range: 0.025 mm/hr - >127mm/hr. Possible values for two- stage benches: 1 – 2.5 mm/hr.
depth _{b,full}	Average depth of the two-stage channel, as measured from the bench surface to the top of the banks (m)	.rte	Data from surveying

Watershed used to evaluate the model Watershed area = 2.7 km²

Land use data source: Cropland Data Layer (CDL, 2009)

Lafayette

Study area

Two-stage ditch

Monitoring station 3

Direction of flow

Control section

Monitoring station 2

Monitoring station 1

Tile drains

Discharge calibration

Comparison of peaks over threshold series

Stage when peaks are over threshold

Velocities when peaks are over threshold

Average monthly sediment out of the two-stage and trapezoidal channel for the period Jan, 1995 – Dec,2014

Average monthly total phosphorus out of the two-stage and trapezoidal channel for the period Jan, 1995 – Dec,2014

Average monthly nitrate-N out of the two-stage and trapezoidal channel for the period Jan, 1995 – Dec,2014

Take home message

- Using the current watershed to demonstrate the model, the two-stage has shown good performance in:
 - Conveyance capacity: <1% reduction
 - Reducing peak velocities : ~ 66%
 - Decreasing sediment yields: ~ 70% during peak flows
 - Reducing amount of phosphorus loads: ~ 36%
 - Reducing Nitrate-N loads: ~ 12%
- Future work will more fully evaluate the new algorithm with respect to water exchange between the benches and channel and differences in nutrient loads.

Thank you !

- Funding for constructing, monitoring and the research done on the two-stage ditch was provided by:
 - Wabash River Enhancement Corporation, through an IDEM 319 grant
 - Purdue Research Foundation and the Estate of Mary Rice
 - NRCS Conservation Innovation Grant

NRCS Natural Resources
Conservation Service

