

A Web Based Interface for Distributed Short-Term Pollution Potential Forecast: **Coupling SWAT with the Global Forecast** System Model Andrew Sommerlot, Daniel Fuka, Moges Wagena, and Zachary Easton 18.01888 Department of Biological Systems Engineering, Virginia Tech **Hydrologic Flowpaths**

Overview

- **Introduction Why short-term?**
- Methods forecast framework development
- **Results Hindcasting and distributed forecasts**
- **Application Web Based Decision Support System**
- **Future Work Further development**

Intro

Studies exist incorporating long-term future climate projections into hydrologic models

These studies cannot accurately predict daily hydrology in the short-term

Why short-term?

Intro

Variable Source Area (VSA) hydrology plays a major role in runoff and pollutant transport

Saturation-Excess driven runoff on agricultural land

Motivation

Identify shortterm high risk areas to better inform management practices

Watershed Science and Engineering Group

Intro

When and where should we spread manure, fertilizers, etc?

Objective: Provide sub-field scale short-term distributed hydrology forecast to inform landscape management decisions

Watershed Science and Engineering Group

Study Area: SF Shenandoah

Identified by the EPA as a Critical Nitrogen and Phosphorus Source to the Chesapeake Bay

Landuse Profile Area - 2600 km^2 Forest - 50% Agriculture - 38% Urban - 11%

SWAT-VSA Model Initialization

We want detailed distributed hydrology

TopoSWAT used for SWAT-VSA initialization

No HRU thresholds for full hru definition

Spatial Inputs:

- 3 m DEM
- FAO Soils
- NLCD 2011

SWAT-STF : Short Term Forecast

Sommerlot et al., 2015

Calibration

SF Shenandoah Outlet Flow Calibration

UVirginiaTech

Biological Systems Engineering

2012 – 2014 NSE = 0.85

SF Shenandoah Outlet Flow Validation

Hindcast Data Set

~ 6 TB of Raw Forecast outputs in GRIB format

Thousands of Files – each a sub-daily worldwide grid

We Need to: Download and Parse the data into SWAT input files

Hindcast Preprocessing

Watershed Science and Engineering Group

Hindcast Validation

SF Shenandoah Outlet Flow: 72 h Forecast

Hindcast Validation

Major Message: Short term forecasting with SWAT-STF is possible up through 4 days

Watershed Science and Engineering Group

Sommerlot et al., 2015

Distributed Hydrology Forecast

Watershed Science and Engineering Group

Distributed Hydrology Forecast

0	125	250	500 Meters

0	125	250	500 Meters

Web-Based Decision Support System

What It Takes:

- **1. Automation Update multiple times daily**
- 2. Parallel Processing
- 3. Modular Code (R, python, shell script)
- 4. 1,000s of Georeferenced Map Tiles
- 5. Hosting
- 6. User Interface (python flask app, javascript, html, css)

Forecast Framework

Sommerlot et al., 2015

SWAT-STF Example +			
🗲 🕲 zachary.bse. vt.edu /example	v C	☆ 自 ♥ ♣ 俞	
Map Satellite			8
Gorgia	Mag data @2015 Google Imag	nerv ©2015. Commonwealth of Virginia. DigitalGl	A left of the second and error

Conclusion

- 1. SWAT-STF can provide satisfactory hydrographic forecasts up to 4 days in advance and distributed forecasts
- 2. SWAT-STF can provide the backend hydrologic modeling in a real-time for a webbased DSS Future Work
- **1. Validation of Distributed Forecasts**
- **2. Improvement of Weather Forecast inputs**
- **3. Feed back and improvement of DSS**