Hillslope hydrology modifications for better representation of variable source areas: SWAT-Hillslope

Soni Pradhanang¹, Linh Hoang², Elliot Schneiderman³, Tammo Steenhuis⁴

2015 SWAT Conference at Purdue University, Oct 14, 2015

THE UNIVERSITY OF RHODE ISLAND

Introduction

- Perched aquifer forming above a relatively impervious soil layer plays a major role in hillslope hydrology.
 - Transmits subsurface flow laterally through the hillslope.
 - Controls soil saturation as the perched water table approaches the surface.
 - Provides water for plant use.
 - Influences biogeochemical transformations related to saturated conditions in soils.

Idealized hillslope profile according to SD approach. Water table saturates location 1, intersects the root zone at location 2, and is below the root zone at location 3.

Moisture Storage Capacity distribution functions commonly used in saturation-excess runoff models. Af (x-axis) is fraction of area of watershed with normalized storage capacity less than or equal to corresponding y-axis value. a) based on TOPMODEL topographic index. b) Pareto distributions with b=0.1, 1, and 10. c) based on USDA Curve number equation. D) empirical distribution as in AWBM model.

- Uses variable bucket approach for modeling soil water storage capacity
- Up to 10 subareas (wetness classes) of increasing capacity (represent the parameterization of storage capacity districution for the catchment)
- Basic wetness classification scheme: 1) perennial stream channel;
 2) perennial wetland; 3) seasonally saturated wetlands; 4) intermittent saturated ares; 5) rarely or never saturated areas

Varying water capacity distribution functions for different combinations of catchment wetness classes. a)catchment dominated by dry or intermittently saturated areas – storage capacity distribution like Topmodel. b)catchment dominated by perennial wetlands – storage capacity distribution like pareto distribution (b>1) or USDA CN equation.

NAME	UNITS	DEFINITION	USED IN		
New Parameters: Infiltration Excess runoff					
fsfactor	None	Frozen Soil adjustment factor for hydraulic	readbsn.f, surq_greenampt.f		
		conductivity in Green Ampt			
hcfactor(mhru)	None	Adjustment factor for hydraulic conductivity	readbsn.f, readhru.f		
		in Green Ampt equation	surq_greenampt.f		
sstmaxd	mm H20	Static depressional storage used in Green-	readbsn.f, surq_greenampt.f		
		ampt algorithm			
New Parameters: Saturation Excess Runoff					
edc(weti)	mm H20	Effective Depth Coefficient: Maximum	readbsn.f, hydroinit.f		
		drainable water storage capacity. Defined at			
		wetness class level. Input in basins.bsn			
edc_factor	None	Calibration factor adjusts all edc values	readbsn.f, satdef.f, wtdepth.f		
effporfactor	None	Fraction of effective porosity that can hold	readbsn.f, wtdepth.f, tileflow.f		
		water under saturated conditions. Adjusts			
		effective porosity.			
latA		Perched aquifer non-linear reservoir coeff	Latflow.f		
latB		Perched aquifer non-linear reservoir coeff	Latflow.f		
perchst datum	Mm H2O	mean depth of perched aquifer drawn down	readbsn.f, hydroinit.f, latflow.f		
		just to point where lateral flow from aquifer			
		ceases			
rechg_paf	none	Fraction of root zone percolation that	readbsn.f, percmain.f, gwmod.f,		
		recharges the perched aquifer	gw_no3.f		
weti(mrhu)	None	Wetness index class (01-10) assigned to each	readsol.f, hydro_init.f		
		HRU. Read from .sol, embedded as characters			
		4 and 5 of soil name			
New Parameters: Penman Monteith Evapotranspiration					
leafIngth	m	average leaf/stem length in direction of wind	readbsn.f, etpot.f		
		to calc boundary layer resistance in canevmax			
saimax	m^2/m^2	maximum stem area index for HRU	readbsn.f, canopyint.f, grow.f		
waco	none	Wind attenuation coefficient for vegetation	readbsn.f, etpot.f		
		with complete canopy cover			
New Parameters: Othe	er	•	•		
lveno	None	Flag; if flag=1, use alternate format and	readfile.f,header.f, headout.f,		
		output variables in output files	hruday.f, subday.f, rchday.f,		
		(.bsn,.sub,hru,.rch); .std output also to	bsnday.f, writed.f		
		output.bsn			

Parameters added to SWAT

Model Parameter changed in basin file

Bacteria Parameter	New Parameter
WDPQ	EDC_FACTOR
WGPQ	RCHRG_PAF
WDLPQ	ALPHA_BF (basin-wide)
WGLPQ	GW_DELAY (basin-wide)
WDPS	LATA
WGPS	LATB
WDLPS	HCFACTOR
WGLPS	FSFACTOR
BACTKDQ	CANMX (basin-wide)
THBACT	WACO
WOF_P	EFFPORFACTOR

SITE

Streamflow Simulations

Time Scale	NSE	R ²
Daily	0.67	0.68
Monthly	0.83	0.86

Streamflow Simulations

DAY

Streamflow Simulations

range of watersheds that have variable source hydrology

Acknowledgements

- Multistate Hatch Project S-1063
- New York City Department of Environmental Protection
- Cornell University