Using a Single HRU SWAT Model to Examine and Improve Representation of Field-Scale Processes

Presented By: Colleen Moloney, Graduate Research Assistant

Co-Authors:

Dr. Cibin Raj, Research Associate; Dr. Jane Frankenberger, Professor; Dr. Indrajeet Chaubey, Professor*

Department of Agricultural and Biological Engineering, Purdue University * Also Head, Department of Earth, Atmospheric and Planetary Sciences, Purdue University

SWAT is a Watershed Scale Model

- Modeling goal is usually to predict water and loads at the watershed outlet
- But simulation starts in the HRUs.

PURDUE

Single HRU SWAT Model

Ν

SWAT simulates processes in HRUs, and aggregates them in subbasins

Landscape Processes

- Infiltration
- Tile Drainage
- Plant Growth
- Nutrient use
- etc.

Channel Processes

- Water routing
- Nutrient routing
- And others...

HRU processes: Some have standard methods with years of evaluation.

Image Source: SWAT 2009 Theoretical Documentation

IN

G

FFRIN

HRU processes: Some have had little evaluation or need to be improved.

Image Source: SWAT 2009 Theoretical Documentation

FFRIN

GIN

SWAT simulates processes in HRUs, and aggregates them in subbasins

Goal of this presentation

- Demonstrate how to set up a single HRU model for evaluating HRU processes
- Show how a single HRU model was developed to evaluate and improve process for two case studies
 - Perennial plant growth
 - Tile drainage processes

How to set up a single HRU model

Method 1 – Process from Scratch

- 1. Set Up in ArcSWAT (or another interface)
- Delineate 2 subbasins (one the area of interest and one "dummy" subbasin)
- 3. Move TxtInOut files to separate folder
- 4. Delete files referring to "dummy" subbasins PURDUE Single HRU SWAT Model

91

Method 2 – Use existing model

- Start with a calibrated watershed model
- Determine what subbasin and HRU are wanted for analysis
- Copy files from TxtInOut which only refer to the HRU in question

PURDUE

Method 2 – Rename Files

- Renumber files so that your HRU is subbasin 1, HRU 1
- Example: Subbasin 2, HRU 5
- 000020000.sub →
 000010000.sub
- 000020005.hru →
 000010001.hru

PURDUE ENGINEERING

Method 2 – Modify HRU File

 In 000010001.hru, change HRU_FR in to 1, to take up 100% of subbasin

	00001	0001.hru	3
1	1	.hru	ile Watershed HRU:2 Subbasi :2 HRU:1 Luse:AGRR Soil: 633185 Slope: 0-
	2		1 HRU_FR : Fraction of <u>subbasin</u> area contained in HRU
	3		121.951 SLSUBBSN : A erage slope length [m]
U	4		0.007 HRU_SLP : Average slope stepness [m/m]
l.	5		0.140 OV_N : <u>Manning's</u> "n" value for overland flow
	6		0.000 LAT_TTIME : Lateral flow travel time [days]
	7		0.000 LAT_SED : Sediment concentration in lateral flow and (
	8		0.000 SLSOIL : Slope length for lateral subsurface flow [m]

Single HRU SWAT Model

FFRI

Method 2 – Modify Subbasin File

Change 000010000.sub area and references to any other HRU

I	000	0010000.sub 🔀	
	1	.sub file Subbasin: 6 9/9/2015 12:00:00 AM ArcSWAT 2012.10_0.14	
	2 3	0.002105 SUB_KM : Subpasin area [km2]	
	4	Climate in subbasin	
	60		
	61	HRU: General	
and the second s	62	000010001.hru000010001.mgt000010001.sol000010001.chm 000010001.gw	
	9	0 ISGAGE: solar radiation gage data used in subbasin	
	10	0 IHGAGE: relative humidity gage data used in subbasi	n
	11	0 IWGAGE: wind speed gage data used in subbasin	
	12	000010000.wgn WGNFILE: name of weather generator data file	

Methods 1 and 2 – Modify fig.fig

Subbasi	n	1	1	1		Subbasin:	1
	00	0010	000.	sub			
Route		2	2	1	1		
	00	0010	000.	rte	000010000.sw	q	
Finish		0					

Resulting input.std

Subbasin Input Summary:									
Sub	Latitu	ude Elev(r	le Elev(m) #HRUs Ponds Elev				<i>v</i> bnds		
1	39.02	238.71	1 1						
HRU Inpu	t Summa	ary Table	1:						
Sub	HRU	Area(ha)	Slope	SlpLgt	:h (n	n) (Ovrlnd_N		
1	1	0.21	0.007	121.95	5	(0.140		
HRU CN II	HRU CN Input Summary Table:								
Sub	HRU	Area(ha)	LULC	Soil		CN1	CN2		
1	1	0.21	AGRR	Cobbsf	or	64.(0 80.8		
HRU Inpu	HRU Input Summary Table 2:								
Sub	HRU	Area(ha)	SoilNa	ame	Hyd	lgrp	MaxRtDpth		
1	1	0.21	Cobbst	fork	С		2000.00		
PURDI ENGINEER	PURDUE Single HRU SWAT Model 15								

Resulting input.std (cont.)

HRU	J Input	t Summa	ary Tab	ole :	3:			
	Sub	HRU	Area (ł	na) 1	Urban	Irrig	Dra	ainTiles
	1	1	0.21				x	
HRU	J Input	t Summa	ary Tab	ole 4	4 (Gr	oundwa	ter)	:
	Sub	HRU	Area (ł	na) (GWdel	ay (day	s),	GWalpha(days)
	1	1	0.21	•	31.00	0		0.048
Tr	ibutary	y/Main	Channe	el C	harac	terist	ics	
				!	Tribu	tary		
	Sub	Length	n (km)	Slo	pe Wi	dth(m)	Cor	nd(mm/hr)
	1	0.01		0.0	00 0.	03	0.0	0000

Single HRU SWAT Model

FF

RI

Example 1 – Perennial Crop Growth

 No parameters available for simulating the perennial bioenergy crops *Miscanthus* and upland switchgrass

Trybula, E. M., Cibin, R., Burks, J. L., Chaubey, I., Brouder, S. M., & Volenec, J. J. (2014). Perennial rhizomatous grasses as bioenergy feedstock in SWAT: parameter development and model improvement. *GCB Bioenergy*. doi:10.1111/gcbb.12210

Data were collected at Purdue's Water Quality Field Station

• Field tour available Thursday of this site

Plant biomass and nutrient content was measured throughout the season

Examples:

- Biomass
- Plant N & P
- Biomass yield
- Field residue after harvest

PURDUE ENGINEERING

Simulated single HRU Plant N was plotted against measured Plant N

Even with measured parameters, plant N was not well simulated by SWAT.

Improved growth algorithms maintain below-ground biomass at harvest.

DUE

The Single HRU model allowed for extensive testing of the existing and improved plant growth algorithm with fieldmeasured data.

Availade Hink GVSYATATe M602 land later

Example 2 – Tile Drainage

- Moriasi et al. (2012) implemented the Hooghoudt and Kirkham equations into the tile drain routine
- Method has been tested at the watershed scale
- No published testing of tile flow directly

Moriasi, D. N., Rossi, C. G., Arnold, J. G., & Tomer, M. D. (2012). Evaluating hydrology of the Soil and Water Assessment Tool (SWAT) with new tile drain equations. Journal of Soil and Water Conservation, 67(6), 513-524. doi:10.2489/jswc.67.6.513

Example 2 – Tile Drainage Equations

24

Example 2 – Tile Drainage

- Tiled field delineated as a subbasin
- "Dummy" subbasin was created and eliminated.
- Modeled for 16 years

Depth to Impervious Layer

• Controls two properties of soil profile: Depth to Impervious Layer and Permeability of the soil profile

Effect of Kirkham Trigger

• Rev. 638 has two conditions to trigger Kirkham: Water Storage (storro) and Water Table (y1)

Example 2 – Effect of LATKSATF and Kirkham

Proposed changes:

- Changing parameters dictating using Kirkham over Hooghoudt
- DEP_IMP parameter controls depth to impervious layer AND seepage through layer

Example 3 – Improved physical representation of vegetative filter strip

Presentation by Cibin Raj Model Development Session (K2) Friday October 16th at 1:30 PM

Conclusion: A Single HRU model is appropriate for testing HRU processes

- HRU processes should be evaluated at the HRU level.
- Single HRU models provide a rapid and efficient way to use field measurements to test and improve these processes.
- cmoloney@purdue.edu

