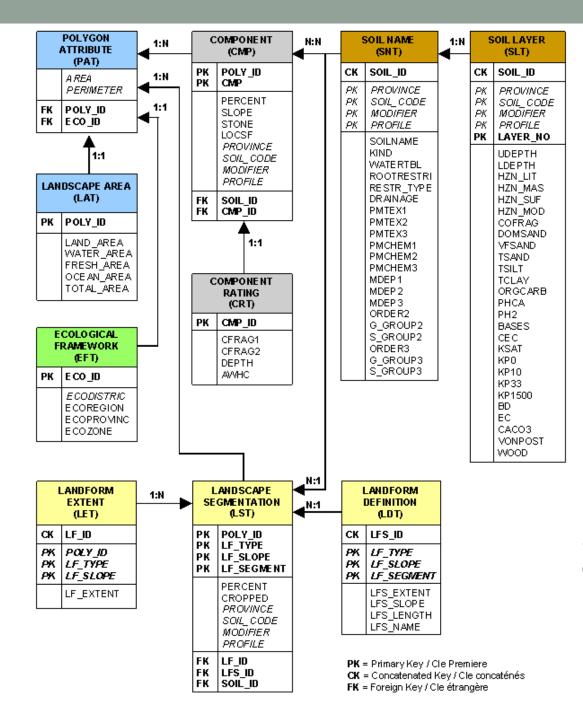


A TOOL TO PREPROCESS THE NATIONAL SOIL DATABASE OF CANADA FOR SWAT2012

Getnet Betrie, Baoqing Deng and Junye Wang

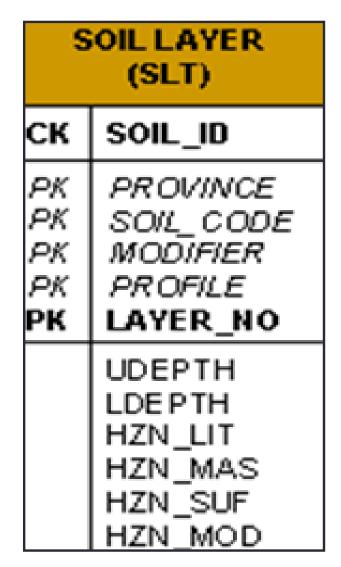
Presentation at 2015 SWAT Conference at Purdue University October 14, 2015

Outline


- National soil database
- SWAT soil database
- Motivation and objective
- Tool development
- Case study

National Soil Database

- Covers the entire land mass of Canada
- 1:1 million scale


- Each polygon on the map represents a distinct soil type
- Contains major attributes for plant growth, land management and soil degradation

Source: Soil Landscapes of Canada Working Group (2010)

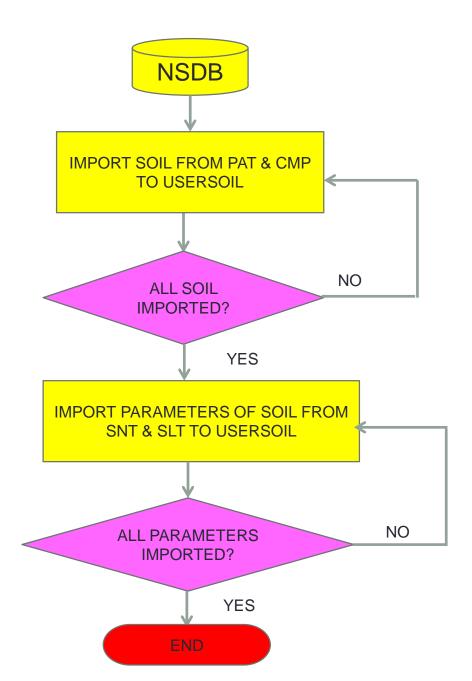
Description of the tables

- PAT: links geographic location of soils and their attributes in the associated tables
- CMP: links polygon and soil attributes in soil name table (SNT) and soil layer table (SLT)
- SNT: describe the general physical and chemical characteristics of soils in a polygon
- SLT: contains physical and chemical information vertically

Soil Database of SWAT

- SWAT distributed
 - Soil database (Swat_US_Soils.mdb)
 - Parameter database (SWAT2012.mdb)
- SWAT2012 contains usersoil table
- Contains component parameters and layer parameters

Field Name	Definition
SNAME	Soil name
NLAYERS	Number of layers
SOL_ZMX	Max rooting depth
SOL_BD	Moist bulk density
SOL_AWC	Available water
SOL_CBN	Organic carbon content
CLAY	Clay content
SILT	Silt content
SAND	Sand content
ROCK	Rock content
USLE_K	Soil erodibility factor
SOL_EC	Electrical conductivity


Approaches to build usersoil

🔨 Append					
 Input Datasets 				_	1
				×	
 Target Dataset 					
Schema Type (optional)					l
TEST				-	l
Field Map (optional)					l
				+	
				×	
				1	
	ОК	Cancel	ironments) <	< Hide Help	

Motivation and objective

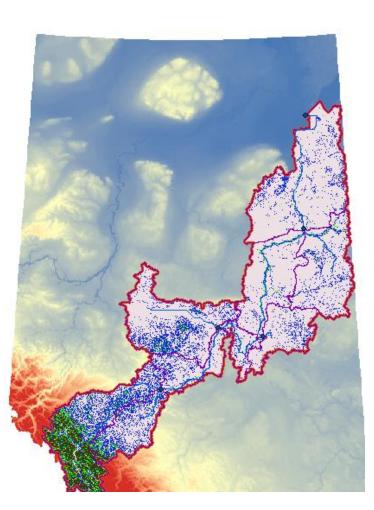
- Existing approaches:
 - Time intensive for large basins
 - Prone to errors
- Objective
 - To develop an ArcGIS tool that preprocesses the national soil database of Canada into usersoil database of SWAT

Algorithm

Tool development

- A Script written in Python language
- Arcpy and math modules used
- Cursor objects created to search, insert, and update tables

```
390
                # create update cursor to write BD into usersoil
     Ē
391
               with arcpy.da.UpdateCursor("usersoil", ("SNAM", "SOL BD1", "SOL BD2", "SOL BD3", "SOL BD4",
                                                        "SOL BD5", "SOL BD6", "SOL BD7", "SOL BD8",
392
                                                        "SOL BD9", "SOL BD10")) as cur bd updt:
393
                    # iterate through each soil in usersoil and write the soil BD (SOL BDi)
394
395
                    for item in cur bd updt:
396
                        if item[0] == sol nam[0]:
                            item[1] = bd values.pop(0)
397
398
                            item[2] = bd values.pop(0)
                            item[3] = bd values.pop(0)
399
400
                            item[4] = bd values.pop(0)
401
                            item[5] = bd values.pop(0)
                            item[6] = bd values.pop(0)
402
                            item[7] = bd values.pop(0)
403
404
                            item[8] = bd values.pop(0)
405
                            item[9] = bd values.pop(0)
406
                            item[10] = bd values.pop(0)
407
                            break
                    cur bd updt.updateRow(item)
408
```


Tool development

 The custom tool in ArcGIS 10.2 used to create a graphical user interface

ArcToolbox	G GetNSDB Tools	
ArcToolbox	Input Workspace	GetNSDB Tools
	Soil Name Feature	Creates the usersoil database of SWAT
	● Soil Laver Feature	from the National Soil Database of Canada
Analysis Tools		
🗄 🚳 Cartography Tools		
🕢 🚱 Conversion Tools		
🗄 🚳 Data Interoperability Tools		
🗄 🚳 Data Management Tools		
🕢 🐼 Editing Tools		
🕀 💱 Geocoding Tools		
🕀 🚳 Geostatistical Analyst Tool:		
🖃 🚳 GetNSDB Tools		
GetNSDB Tools		
		· · · · · · · · · · · · · · · · · · ·
	OK Cancel Environments << Hide Help	Tool Help

Case study

- The river begins from the Columbia Glacier and drains into Lake Athabasca
- Covers 138,000 km²
- Landuse:
 - glacier
 - Agriculture
 - Forest
 - Wetlands
 - Urban centers
- The basin has 9 subasins

How to use the tool?

- Place NSDB, script and tool in one folder
- Load the tool into arctool box

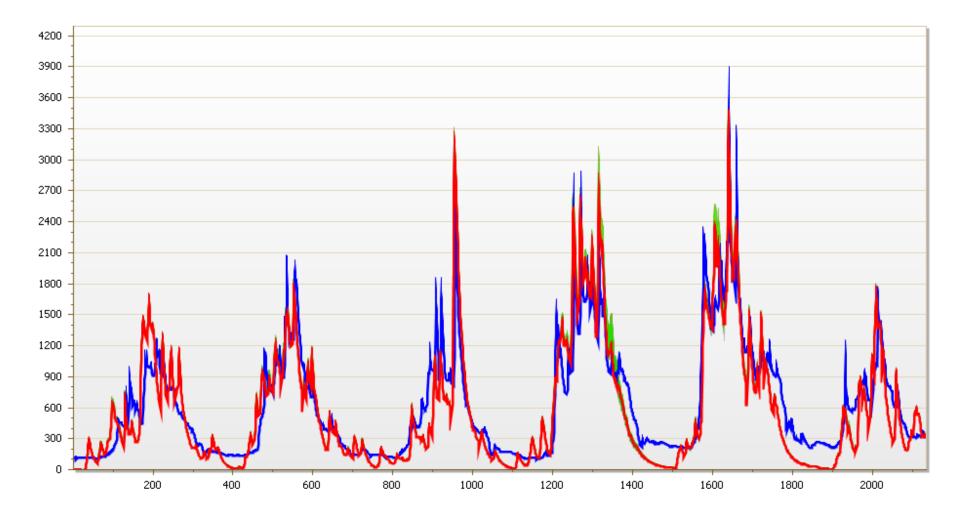
₩C 👷X 🐋Y 🔮Z 📬1	@
C:\SWAT\soil_databases	
J	
🚺 ca all slc v3r2	
GetNSDBTools.tbx	
getNSDB-org.py	
getNSDB.py	
SWAT2012.mdb	

Add Toolbox			x
Look in:	mdb		
Name: Show of type:		pen ancel	

How to use the tool

Provide the input parameters

3 GetNSDB Tools	
Input Workspace C:\\$WAT\soil_databases\\$WAT2012.mdb Soil Name Feature soil_name_ab Soil Layer Feature soil_layer_ab	Creates the usersoil database of SWAT from the National Soil Database of Canada
OK Cancel Environments << Hide Help	Help Tool Help


How to use the tool

GetNSDB Tools	
Executing GetNSDB Tools Cancel	
< Details	5
Close this dialog when completed successfully	
usesoil database. Record number 60 is written to the usesoil database.	^
Record number 61 is written to the usesoil database.	
	•

GetNSDB Tools	X
Completed	Close
	<< Details
Close this dialog when completed successfully	
Record number 2153 is written to usesoil database.	the 🔺
Completed script GetNSDBTools Succeeded at Mon Oct 12 23:52:04	2015
(Elapsed Time: 4 minutes 30 seco	nds)

MUID*	SEQN	SNAM	S5ID *	CMPPCT	NLAYERS	HYDGRP	SOL_ZMX	ANION_EXCL	SOL_CRK	TEXTURE	SOL_Z1	SOL_BD1	SOL_AWC1	SOL_K1	SOL_CBN1
► ABBER~~~~N	1	BERLAND	AB	100	5	В	2250	0.5	0.5	VFS-LVFS-CSL-SL-FSL-GSL-CBSL-GFSL	0	0.1	20	300	40
ABBEVzz~~~A	1	BELLEVUE	AB	100	6	B	2510	0.5	0.5	VFSL-L-SIL-SI-GL-GSIL	150	1.25	11	100	2.5
ABBEVzz~~~N	-	BELLEVUE	AB	100		B	2470	0.5	0.5	VFSL-L-SIL-SI-GL-GSIL	110	1.15	11	100	3.3
ABBEV~~~~A		BELLEVUE	AB	100	6		2510	0.5		VFSL-L-SIL-SI-GL-GSIL	150	1.25	10	100	2.5
ABBEV~~~~N	-	BELLEVUE	AB	100	-	B	2470	0.5		VFSL-L-SIL-SI-GL-GSIL	110	1.15	9	300	3.3
ABBEZ~~~~A	-	BEZANSON	AB	100		C	3150	0.5		SC-SIC-C-GSIC	130	1.25	15	100	3.7
ABADY	-	ACADEMY	AB	100	4	-	2680	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	150	1	14	100	6.2
ABAGH~~~~A	-	ALBRIGHT	AB	100		C	3150	0.5		SC-SIC-C-GSIC	130	1.25	15	100	3.7
ABAGH~~~~N	-	ALBRIGHT	AB	100		c	3130	0.5		SC-SIC-C-GSIC	0	0.1	20	300	40
ABAGSer~~~A	-	ANGUS RIDGE	AB	100	5		2920	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	100	1.25	13	100	3
ABAGSsa~~~A		ANGUS RIDGE	AB	100	5		1100	0.5	0.5		170	1.25	13	100	4
ABAGSsc~~~A	-	ANGUS RIDGE	AB	100		B	1100	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	170	1.25	13	100	4
ABAGSst~~~A	-	ANGUS RIDGE	AB	100	5		3300	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	170	1.25	13	100	4
ABAGS~~~~A	-	ANGUS RIDGE	AB	100		B	3300	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	170	1.25	13	100	4
ABAGS~~~~N	-	ANGUS RIDGE	AB	100		B	3300	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	170	1.15	13	300	5.2
ABALCaaxp~A		ALCAN	AB	100	6		5640	0.5		SC-SIC-C-GSIC	140	1.15	12	100	1.5
ABALCco~~~A	-	ALCAN	AB	100		c	5640	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	140	1.15	13	100	1.5
ABALCONNA		ALCAN	AB	100		c	5720	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	0	0.1	20	300	34.6
ABALGxt~~~N	-	ALGAR LAKE	AB	100	7	-	3270	0.5		SC-SIC-C-GSIC	0	0.12	20	300	40
ABALG	-	ALGAR LAKE	AB	100		D	2520	0.5		SC-SIC-C-GSIC	0	0.12	20	30	40
ABALG	-	ALGAR LARE	AB	100		B	2520	0.5		VFSL-L-SIL-SI-GL-GSIL	80	1.15	20	300	2.5
		ALTARIO	AB	100	5	-	3250	0.5			180	1.15	10	100	2.5
ABALT~~~~A	-		AB		-	B				VFSL-L-SIL-SI-GL-GSIL	80	1.25			2.5
ABALT~~~~N		ALTARIO		100	-	_	3150	0.5	0.5				10	300	
ABALX~~~~N		ALTRUDE	AB	100	-	B	1950	0.5		FS-LCS-LS-LFS-GLS-CBLS	0	0.1	20	300	45.3
ABAMK~~~~N	-	AMISK	AB	100	6	-	3670	0.5	0.5		0	0.1	20	300	30
ABAMT~~~~N		AMITY	AB	100	5	-	2800	0.5	0.5		100	1.1	14	300	4.6
ABANOer~~~A		ANTONIO	AB	100		В	1580	0.5		VFS-LVFS-CSL-SL-FSL-GSL-CBSL-GFSL	150	1.4	8	100	0.6
ABANOgl~~~A		ANTONIO	AB	100		С	2030	0.5		VFS-LVFS-CSL-SL-FSL-GSL-CBSL-GFSL	120	1.35	10	100	1.5
ABANOst~~~A		ANTONIO	AB	100		В	2030	0.5	0.5		120	1.35	9	100	1.2
ABANO~~~~A		ANTONIO	AB	100	4		2030	0.5		VFS-LVFS-CSL-SL-FSL-GSL-CBSL-GFSL	120	1.35	9	100	1.2
ABANO~~~~N		ANTONIO	AB	100	5	-	2100	0.5		VFS-LVFS-CSL-SL-FSL-GSL-CBSL-GFSL	30	1.2	10	300	1.6
ABANR~~~~A	-	ANTROSE	AB	100	-	C	3610	0.5	0.5		180	1.15	14	100	3.7
ABANR~~~~N		ANTROSE	AB	100	7	-	3560	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	0	0.1	20	300	30
ABANZ~~~~N	-	ANZAC	AB	100		D	1550	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	0	0.12	20	30	40
ABARE~~~~A		ARDENODE	AB	100		В	3150	0.5		VCS-CS-S-GS-CBS	150	1.4	6	300	1.6
ABARE~~~~N	-	ARDENODE	AB	100	5		3150	0.5		VCS-CS-S-GS-CBS	150	1.3	6	600	2.1
ABARM~~~~A	-	ARMENA	AB	100		С	840	0.5	0.5	VFSL-L-SIL-SI-GL-GSIL	180	1.15	14	100	3.5
ABARM~~~~N	-	ARMENA	AB	100		С	660	0.5	0.5	VFSL-L-SIL-SI-GL-GSIL	300	1.1	13	300	4.6
ABARV~~~~N	1	AMBER VALLEY	AB	100	4		1350	0.5	0.5	SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	0	0.12	20	30	40
ABASLaast~N	1	ANSELL	AB	100	7	В	2500	0.5	0.5	SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	0	0.1	20	300	40
ABASLaaxp~N	1	ANSELL	AB	100	8	В	3300	0.5	0.5	SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	0	0.1	20	300	40
ABASLaa~~~N	1	ANSELL	AB	100	7	В	2500	0.5	0.5	SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	0	0.1	20	300	40
ABASLst~~~N	1	ANSELL	AB	100	7	В	2500	0.5	0.5	SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	0	0.1	20	300	40
ABASLxp~~~N	1	ANSELL	AB	100	8	В	3300	0.5	0.5	SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	0	0.1	20	300	40
ABASL~~~~N	1	ANSELL	AB	100	7	В	2500	0.5	0.5	SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	0	0.1	20	300	40
ABASPaa~~~N	1	ASPLUND CREEK	AB	100	9	С	1840	0.5	0.5	SC-SIC-C-GSIC	0	0.1	20	300	25
ABASPxt~~~N	1	ASPLUND CREEK	AB	100	9	С	1840	0.5	0.5	SC-SIC-C-GSIC	0	0.1	20	300	25
ABASP~~~~N	1	ASPLUND CREEK	AB	100	9	С	1840	0.5	0.5	SC-SIC-C-GSIC	0	0.1	20	300	25
ABAST~~~~N		ASPHALT	AB	100	-	D	1200	0.5	0.5		0	0.06	15	600	32.2
ABATLcr~~~N	-	ANTLER	AB	100		B	2550	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	200	1.15	14	100	5.2
ABATLgl~~~N	-	ANTLER	AB	100	4		2550	0.5	0.5		200	1.15	15	100	7.8
ABATLst~~~A	_	ANTLER	AB	100		B	2550	0.5	0.5		200	1.15	15	100	4
ABATLxp~~~N		ANTLER	AB	100	5		2150	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	150	1.20	14	300	6.2
ABATLzr~~~N	-	ANTLER	AB	100	-	B	2100	0.5		SCL-FSCL-VFSCL-CL-SICL-GSCL-GL-CBCL	200	1.15	14	100	3.9
	· ·	- ALLER	200	100		-	2100	0.5	0.0	332-, 302-11 302-02-0102-0302-02-02-02-02-02-02-02-02-02-02-02-02-0	200	1.10	14	100	3.8

Simulation results

THANK YOU!

Questions/comments: gbetrie@athabascau.ca and junyew@athabascau.ca