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Background

e Streamflow prediction:
v Operation and optimization of water resources
v Flood control and water resource management

v It is complicated: Climate, topology, topography, soil, geology, land
use/cover

e Accuracy of different flow prediction models:

v' Empirical methods are simplistic and are constrained to a functional
form between variables prior to the analysis.

v' Process-based models take into account various processes of the
hydrological cycle via mathematical formulation.




Background Run-off Prediction
in Ungauged Basins

Synthesis across Processes,
Places and Scales

v’ Predictions in ungauged
watersheds are more
challenging

No data for calibration

Regionalization: Transfer of
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parameters from neighboring
gauged watersheds (donor) to
an ungauged (target) Table 3. Hegiunal ﬂund-frequency relations for USGS Rural Peak-Flow Regression Equations

National Streamflow Statistics Program

Regional Regression Equation Publications by State

urban streams in Alabama.
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Watershed Delineation

SWAT - ANN

* Soil Water Assessment Tool (SWAT)
v alarge amount of spatial and temporal data needed.

v’ Calibration and validation processes are time consuming, requires good
expertise and could be challenging.

e Artificial Neural Network (ANN)

v' Select the best combination of the input variables for a parsimonious
model.

v If an event is beyond their training data range, the predictive model would
perform poorly with high uncertainty. e Ul [l
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Coupling SWAT with ANN

4 Warm Season g, -
(May to Oct)

Baseflow

Stormflow Cool Season oy, -
\_ (Nov to Apr)

Model Performance Rate (Kalin et al. 2010):
* Verygood: E, ., 20.70; |[Rg;45|< 0.25
Good: 0.50 < E, ;< 0.70; 0.25 < | Ry, .| £0.50

Satisfactory: 0.30 < E, ,, < 0.50; 0.50 < |Rp, 45| £0.70

Unsatisfactory: E, ., < 0.30; |Rp, 45| >0.70




Coupling SWAT with ANN

Warm Season

(May to Oct)
)

Leave-One-Out Jackknifing Technique
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Results, Warm Season
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Validation

Flow Z SWAT-CUP
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Conclusions

* Performance rates of coupled models:
v' 62% of the runs for the cool season === Good to Very good

v' 83% of the runs for the warm season === Good to Very good

Performance rate of SWAT models:

v' 34% of the runs =) Good to Very good

As the percent forest cover or the size of test watershed increased, the coupled
model performances gradually decreased during both cool and warm.

Coupled models work better in urbanized watersheds with size <200 km?.

Combining ANN and SWAT could enrich the modeling environment by:

v' Excluding the calibration and sensitivity analysis to adjust the SWAT model
parameters

v" Narrowing down the number of inputs to ANN.




Thank you for yor attention!

For more information please contact: Latif Kalin, Latif@auburn.edu
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