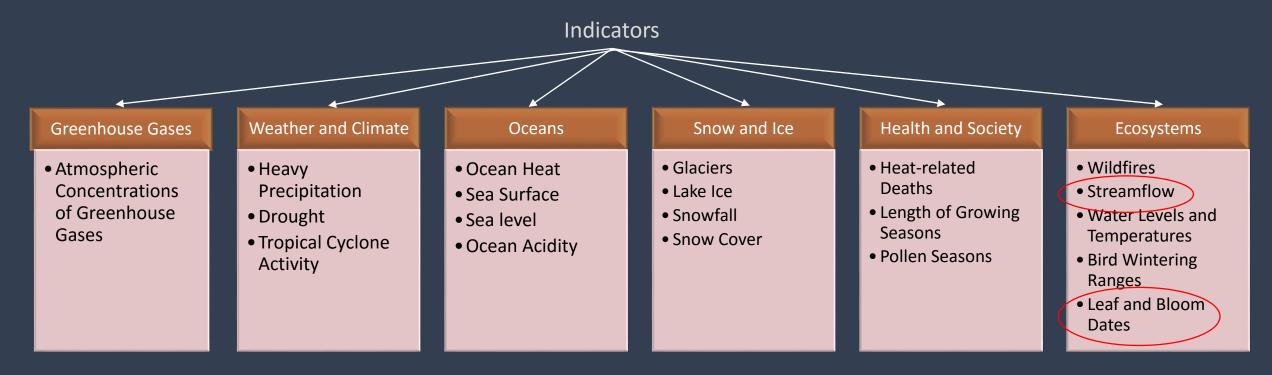
Climate and Land Use/Cover Impacts on the Ecologically Relevant Flow Metrics in the Cahaba River

2015 International SWAT Conference at Purdue University October 14, 2015

Furkan Dosdogru, Dr. Latif Kalin


School of Forestry and Wildlife Sciences

Auburn University, AL, USA

Climate Change

• Earth's climate is changing in ways that affect our weather, oceans, snow, ice, society and ecosystems.

What is happening?

According the NASA (climate.nasa.gov)

Credit: www.ethicalconsumer.org/portals/0/images/oil%20sands/oil-sandsbefore&after800x2.jpg

©Mark Moran, U.S. National oceanic and atmospheric administration

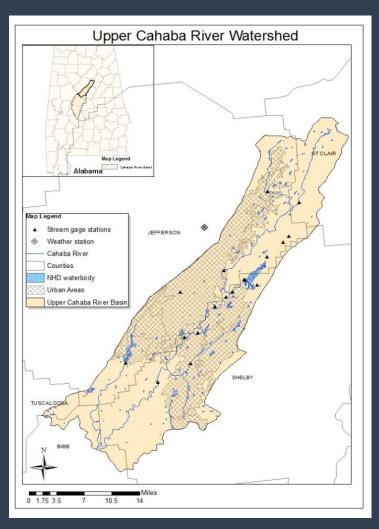
Credit: texasstateaquarium.

Impacts of LULC on the River Ecology

- Ecosystem and biodiversity are intrinsically dependent on the changes,
- Species and ecosystems are experiencing changes in:
 - ranges,
 - timing of biological activity,
 - growth rates,
 - cycling of water.

*Even small changes can have significant effects on living things.

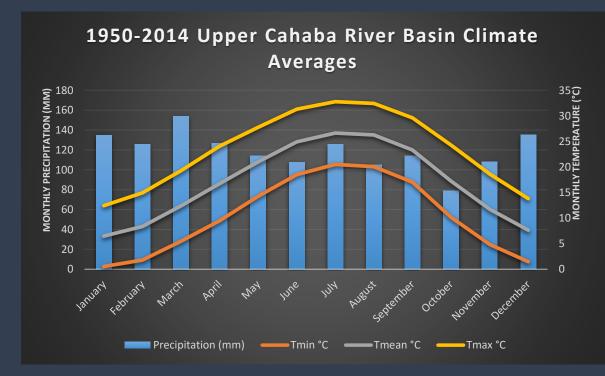
Cahaba River Watershed


- Alabama's longest free flowing river.
- Its headwaters are located within the Alabama Ridge and Valley physiographic region and eventually flow southwest into the East Gulf Coastal Plain.
- This is the only point within the 48 contiguous states where the geological landscape transitions abruptly from mountainous regions directly to a coastal plain.
- Most diverse aquatic ecosystems in the United States (Pierson et al., 1989).
- "Hotspot of Biodiversity" out of 2,111 watersheds in the contiguous United States (The Nature Conservancy).
- There are a variety of ways to enjoy the outdoors on the Cahaba River.

Cahaba River Watershed

- Highly developed urban area. Population expected to rise significantly within the watershed in the future.
- Mainly humid with annual rainfall of 139.7 cm (55 inches). Mean monthly temperatures: 7.2°C (45°F) in January to 26.6°C (80°F) in July and August. (U.S Historical Climatology Network (USHCN)).
- Elevations in the watershed range from 82meters (269 feet) to 335 meters (1,100 feet).

Cahaba River - Cahaba lilies(*Hymenocallis* coronaria)


- Cahaba River supports 69 rare and imperiled species (The Nature Conservancy).
- One of the most well-known is Cahaba lilies (H. coronaria)

Climate Averages and Land Use/Cover Changes in the upper Cahaba River Basin

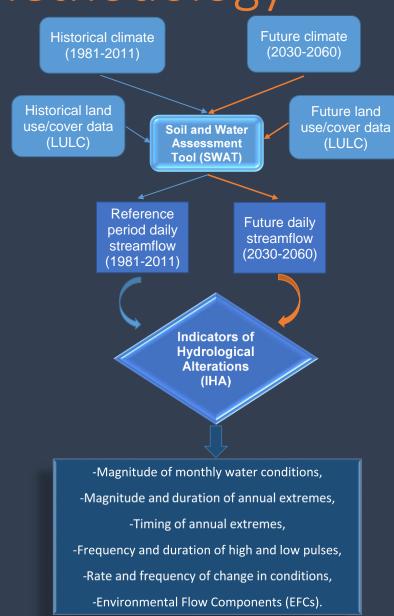
Climate

Land Use

	1992 (%) NLCD	2011(%) NLCD	2040 (%) USGS-EROS A1B
WATER	0.92	1.13	1.44
URBAN	9.15	32.5	49.59
FOREST	75.6	52.27	31.2
RNGB	5.42	7.39	11.1
AGRN	2.58	0.4	2.1
WETF	0.04	1.16	1.54
OTHERS	6.29	5.15	3.03

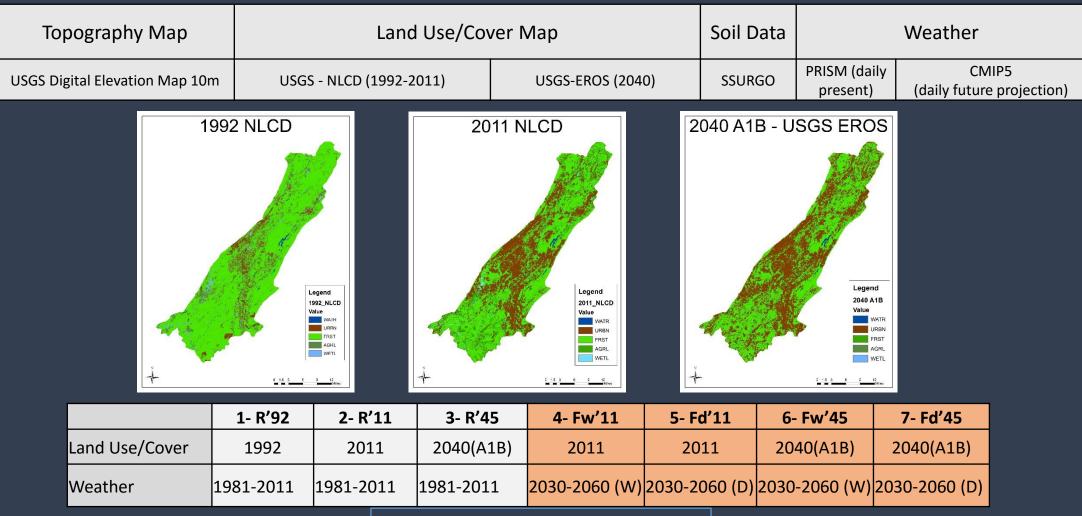
Objectives

1- What are the hydrological responses to land use/cover (LULC) and climate changes in rapidly urbanizing upper Cahaba River Basin in north-central Alabama?

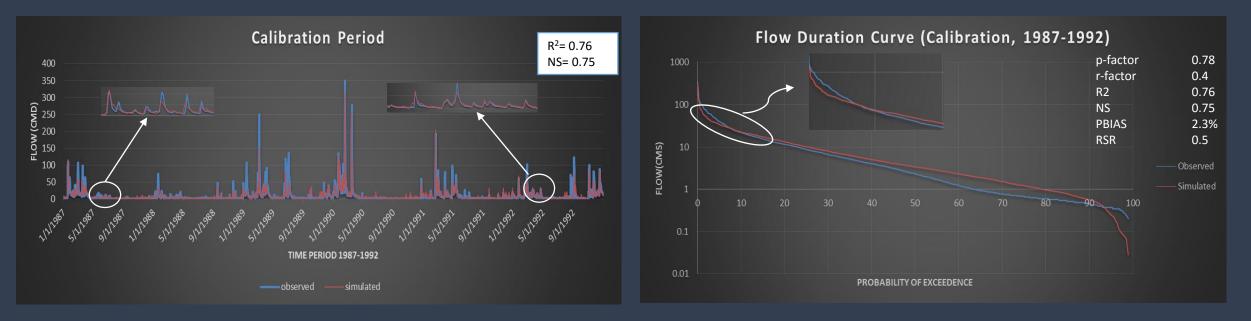

2- How changes in flow in the Cahaba River system will affect Environmental Flow Components (EFCs)?

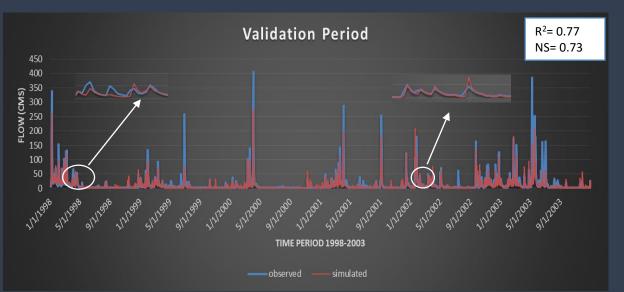
Ecologically Relevant Flow Metrics

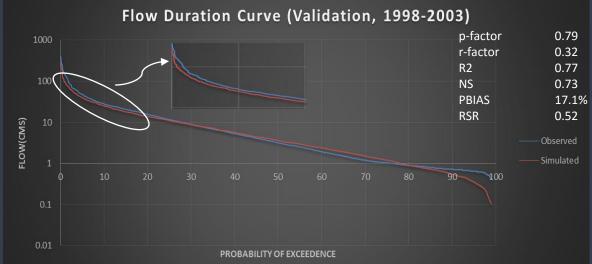
- Indicators of Hydrologic Alterations software (IHA)
- The Nature Conservancy has identified 32 key flow metrics that captures low, median, high flow as well as flashiness having significant impact on the flora and fauna.


IHA group	Hydrologic parameters	Ecosystem influences		
Magnitude of monthly water conditions	Mean value for each calendar month (12 parameters)	 Availability of habitat for aquatic organisms Availability of soil moisture for plants Availability of water Reliability of water supplies for wildlife Effects of water temperature and dissolved oxygen 		
Magnitude and duration of annual extreme water conditions (mean daily flow)	 Annual 1-day minima Annual 3-day minima Annual 7-day minima Annual 30-day minima Annual 90-day minima Annual 1-day maxima Annual 3-day maxima Annual 7-day maxima Annual 30-day maxima Annual 30-day maxima Annual 90-day maxima Annual 7-day maxima 	 Balance of competitive and stress- tolerant organisms Creation of sites for plant colonization Structure of river channel morphol- ogy and physical habitat conditions Soil moisture stress in plants Dehydration in wildlife Duration of stressful conditions Distribution of plant communities 		
Timing of annual extreme water conditions	 Julian date of each annual 1-day maxima Julian date of each annual 1-day minima 	 Predictability and avoidability of stress for organisms Spawning cues for migratory fish 		
Frequency and duration of high and low pulses	 Number of low pulses within each year Mean duration of low pulses each year Number of high pulses within each year Mean duration of high pulses each year 	 Frequency and magnitude of soil moisture stress for plants Availability of floodplain habitat for aquatic organisms Effects of bedload transport and channel sediment distribution, and duration of substrate disturbance 		
Rate and frequency of water condition changes	 Means of all positive differences between consecutive daily values Means of all negative differences between consecutive daily values Number of hydrologic reversals 	 Drought stress on plants Desiccation stress on low-mobility streamedge organisms 		

Methodology

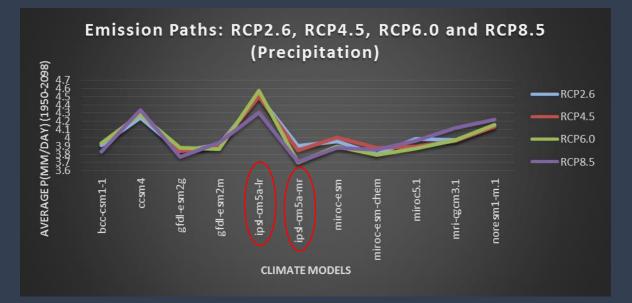

- Model and Calibration: Soil and Water Assessment Tool (SWAT) and SWAT-CUP
- Weather Data: PRISM Climate Group Climate Data and Coupled Model Intercomparison Project Phase 5 (CMIP5)
- Land Use/Cover Data: NLCD (1992-2011) and USGS EROS Center FORE-SCE (2040 A1B)
- For understanding Hydrologic Changes in Ecologically-Relevant Terms: Indicators of Hydrological Alterations (IHA)


Input Data and Scenarios



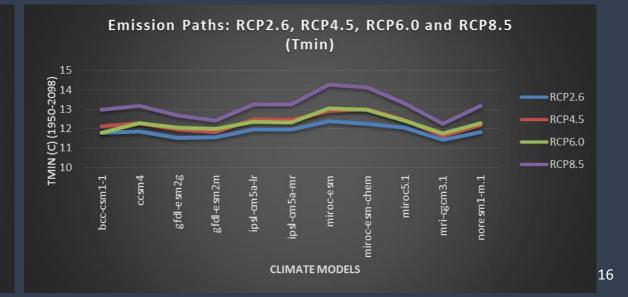
SWAT Model

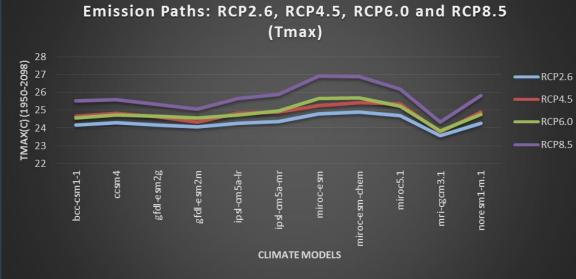
- The model was calibrated (1987-1992) and validated (1998-2003)
- For different scenarios daily streamflow data was produced from;
 - 1) 1981 to 2011
 - 2) 2030 to 2060



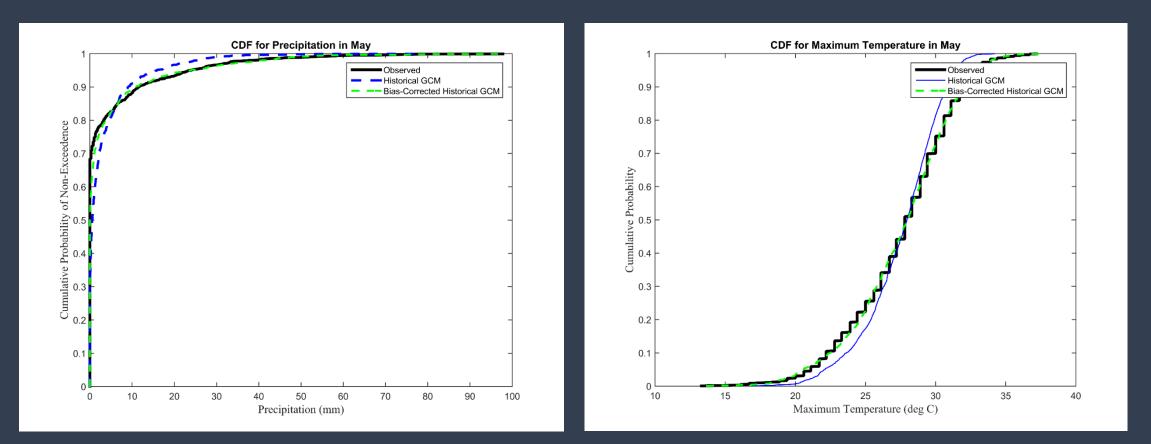
Future Climate Projections (Emission Scenarios and Climate Models)

• Future daily streamflow was generated using daily CMIP5 climate data (P, Tmin, Tmax) up to year 2060 with two climate models under two different emissions scenarios (RCP6.0, and RCP8.5).

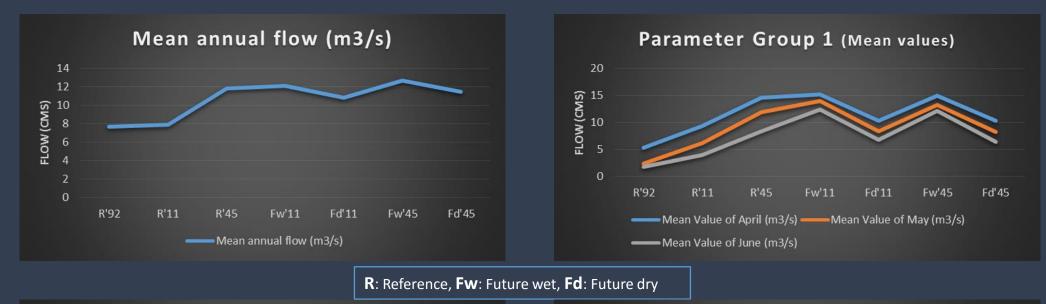

	Description	Publication	
RCP8.5	Rising radiative forcing pathway leading to 8.5 W/m2 (~1370 ppm CO2 eq) by 2100.	Riahi et al. 2007	
RCP6	Stabilization without overshoot pathway to 6W/m2 (~850 ppm C)2 eq) at stabilization after 2100	Fujino et al. 2006; Hijioka et al. 2008	
RCP4.5	Stabilization without overshoot pathway to 4.5 W/m2 (~650 ppm CO2 eq) at stabilization after 2100	Clarket et al. 2007; Smith and Wigley 2006; Wise et al. 2009	
RCP2.6	Peak in radiative forcing at ~3 W/m2 (~490 ppm CO2 eq) before 2100 and then decline (the selected pathway declines 2.6 W/m2 by 2100)	Van Vuuren et al. 2007a; van Vuurent et al. 2006	

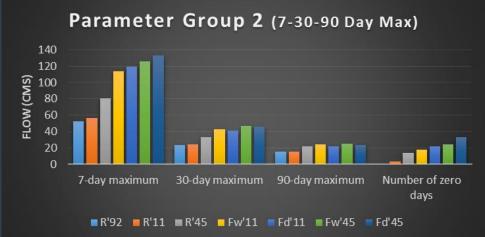


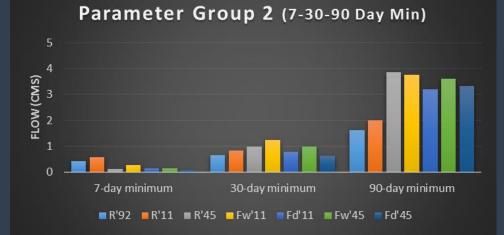
Climate Models

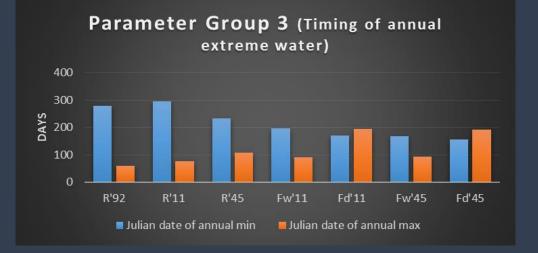

As a wet model: ipsl-cm5a-lr (RCP6.0) - Highest average precipitation

As a dry model: ipsl-cm5a-mr (RCP8.5) -Lowest average precipitation

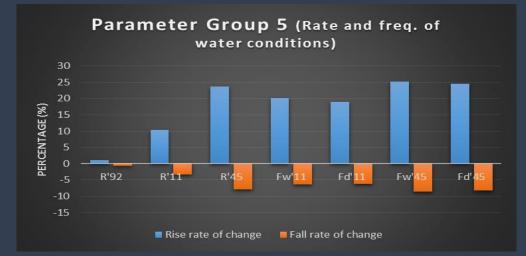





Bias Correction



Results



Parameter Group 4 (Freq. and duration of high-low pulses)

■ Low pulse count ■ Low pulse duration ■ High pulse count ■ High pulse duration

R: Reference, Fw: Future wet, Fd: Future dry

Conclusion

Ecologically Relevant Flow Metrics

- The streamflow of the upper Cahaba River has a high probability of increasing in the future due to LULC and Climate Change.
- The impact of **hydrological fluctuations** on the life cycle of aquatic ecosystems will not be negligible,
- The stress on the aquatic ecosystem due to extremely **low and high** flow changes will increase.

The results of this study would be helpful to researchers interested in the streamflow alterations due to LULC and Climate Change on the fish and plant ecosystems.

Acknowledgment

• Republic of Turkey Ministry of Forestry and Water Affairs, General Directorate of Combating Desertification and Erosion

Thanks for your attention!

Image credit: www.epa.gov

Appendix A. Parameters Modified in the Calibration Process

Sensitivity	P-Value	Name	Definition	Range	SWAT Default Value	New Value
Sensitivity	r-value	Name	Demitton	Nalige	value	New Value
	1 0.000	CANMX.hru	Maximum canopy storage	0-100	0	33
	2 0.002	1 SOL_K.sol	Saturated hydraulic conductivity	0-2000	100.8	59
	3 0.002	1 CN2.mgt	Initial SCS CN II Value	35-98	66	-18%
	4 0.01	5 GW_DELAY.gw	Groundwater delay (days)	0-500	31	5.39
	5 0.024	4 RCHRG_DP.gw	Deep aquifer percolation fraction	0-1	0.05	0.33
	6 0.029	9 GWHT.gw	Initial groundwater height (m)	0-25	1	16
	7 0.04	7 REVAPMN.gw	Threshold depth of water in the shallow aquifer for "revap" (mm)	0-500	1	252
		3 GWQMN.gw	Treshold depth of water in the shallow aquifer (mm)	0-5000	1000	370
		2 GW_REVAP.gw	Groundwater "revap" coefficient	0.02-2	0.02	0.14
		SOL_AWC.sol	Available water capacity of the soil layer	0-1	0.15	+16%
:		BALPHA_BNK.rte	Baseflow alpha factor for bank storage	0-1	0	0.73
:	12 0.159	9 SOL_BD.sol	Moist bulk density	0.9-2.5	1.45	1.63
:	13 0.200	6 ALPHA_BF.gw	Baseflow alpha factor (days)	0-1	0.048	0.22
:	14 0.259	9 SURLAG.bsn	Surface runoff lag time	0.05-24	4	12
:	15 0.438	8 ESCO.bsn	Soil evaporation compensation factor	0-1	0.095	0.71
:	16 0.742	1 EPCO.bsn	Plant uptake compensation factor	0-1	0	0.7

Appendix A. Used parameters in calibration process

Appendix B. IHA Results

	51 5	52 S3	3	54 5	\$5	S6	S7	
Mean annual flow (m3/s)	7.68	7.85	11.79	12.1	10.77	12.63	11.43	
Parameter Group #1	arameter Group #1							
Mean Value of April (m3/s)	5.371	9.398	14.57	15.19	10.32	15	10.26	
Mean Value of May (m3/s)	2.418	6.124	11.94	13.984	8.345	13.244	8.188	
Mean Value of June (m3/s)	1.765	4.008	8.343	12.4	6.733	12.18	6.437	
Parameter Group #2								
7-day minimum	0.4174	0.5691	0.124	0.2701	0.154	0.1376		
30-day minimum	0.6532	0.8472	0.9883	1.246	0.7958	0.9884	0.628	
90-day minimum	1.624	2.005	3.858	3.76	3.212	3.605	3.318	
7-day maximum	52.34	56.48	80.66	113.6	119.2	125.9	132.9	
30-day maximum	23.37	24.09	32.97	43.15	41.43	46.79	46.19	
90-day maximum	15.45	15.66	21.52	24.17	21.89	25.33	23.8	
Number of zero days	0	3.071	13.89	17.89	22.04	24.18	33.46	
Parameter Group #3								
Julian date of annual min	279	294.3	233.1	196.8	170.6	167.6	154.7	
Julian date of annual max	60	77.04	107.9	91.32	194.5	93.68	192	
Parameter Group #4								
Low pulse count	7	8.786	14.64	10.46	10.5	12.07	11.14	
Low pulse duration	8	10.22	6.202	8.207	8.544	7.122	7.752	
High pulse count	16.5	12.04	16.5	9.25	8.571	11.57	10.89	
High pulse duration	3	1.81	1.308	1.47	1.45	1.403	1.427	
Parameter Group #5								
Rise rate of change	1.09	10.39	23.76	20.2	18.99	25.28	24.6	
Fall rate of change	-0.591	-3.309	-7.834	-6.442	-6.126	-8.521	-8.191	
Environmental Flow Components (EFC) Low Flows								
April Low Flow	3.389	4.209	5.524	6.113	4.476	4.212		
May Low Flow	2.364	3.167	4.558	4.589	3.67	3.226	2.229	
June Low Flow	1.788	2.615	3.476	3.341	2.628	2.322	1.534	

Appendix B. IHA parameters

References

- Perrine Hame, Eboardo DALY, Tim D. Fletcher, Which baseflow metrics should be used in assessing flow regimes of urban streams?
- Indicators of Hydrologic Alteration (IHA) (https://www.conservationgateway.org)
- Coupled Model Intercomparison Project Phase 5 (CMIP5) (http://cmip-pcmdi.llnl.gov/cmip5/)
- Prism Climate Group (http://www.prism.oregonstate.edu/)
- National Land Cover Database (NLCD) (http://www.mrlc.gov/)
- USGS Earth Resources Observation and Science (EROS) Center (http://landcovermodeling.cr.usgs.gov/projects.php)