2015 SWAT CONFERENCE, PURDUE

Climate Change Impact Assessment on Long Term Water Budget for Maitland Catchment in Southern Ontario

By
Vinod Chilkoti
Aakash Bagchi
Tirupati Bolisetti
Ram Balachandar

Contents

- Objectives
- Methodology
- Watershed description
- SWAT model
 - Data collection
 - Calibration and validation
- Climate change impact assessment study
 - Climate model
 - Inputs
 - Bias correction
 - SWAT model results
- Conclusions

Objective

The major objective of the present research is

 To assess the climate change impact on long term water budget for Maitland catchment for 2071-2100 period using CanRCM4 climate model

Methodology

- Hydrological modeling using Soil and Water Assessment
 Tool (SWAT) 2012 is done for Maitland River catchment
- Model is calibrated and validated using observed daily flows
- Climate change impact assessment on catchment water budget is carried out
- Canadian Regional Climate model (CanRCM4) nested in CanESM2 GCM for CORDEX NAM domain with 0.44⁰ grid resolution is used

Methodology

Climate change impact assessment process

Study Area

Catchment located in south-western Ontario, Canada

Watershed Description

Catchment Area : 2455 km²

Elevation : 235m to 525m

River : Maitland, ~150km length

Tributaries : Middle Maitland, Little

Maitland, South Maitland

Outfall : Drains into Lake Huron ~El. 185m

(at Goderich)

Watershed Description

Annual average

rainfall : ~1100 mm

• temperature : $\sim 2.6^{\circ}$ C (min) to 11.5°C (max.)

evapotransp. : ~ 550mm

Land cover

Agriculture : 81%

• Natural cover : 15%

• Urban : 3%

Soils

Harriston (silt loam): 72%

Huron (silt loam) : 10%

• Brookstone (clay) : 7%

Data Collection

- Climate Data Environment Canada
- 5 climate station (1970-2015)
- Flow data at Benmiller (1989 2013)

Data Collection

- Landuse South Ontario Landuse Resource Information System (SOLRIS)
- Soil National Soil Data Base, Soil landscapes of Canada (slc)

PERTH

Data Collection

- Observed daily flow data at Environment Canada's 02FE015 gauging station is available from 1989-2013
- 1989 2001 data is used

- Model performance statistics
 - Nash-Sutcliffe Efficiency (NSE)

$$NSE = 1 - \frac{\sum_{i} (Q_m - Q_s)_i^2}{\sum_{i} (Q_{m,i} - \overline{Q}_m)^2}$$

Coefficient of determination, R²

$$R^{2} = \frac{\left[\sum_{i} (Q_{m,i} - \overline{Q}_{m})(Q_{s,i} - \overline{Q}_{s})\right]^{2}}{\sum_{i} (Q_{m,i} - \overline{Q}_{m})^{2} \sum_{i} (Q_{s,i} - \overline{Q}_{s})^{2}}$$

where, Q_m – measured or observed discharge Q_s – simulated discharge

Sensitivity Analysis

Parameter sensitivity

Most sensitive parameters

GWQMN.gw, CN2.mgt, ESCO.hru, GW_REVAP.gw SMTMP.bsn

- Annual water yield calibration
- 1989 1996

Annual Water Yield

- Monthly water yield calibration
- 1989 1996

Monthly Water Yield

- Daily flow calibration
- 1989 1996

Daily stream flows

Model Validation

- Annual and monthly water yield calibration
- 1997 2001

Annual Water Yield

Monthly Water Yield

Model Validation

Daily stream flows

Climate Change Impact Assessment Study

 Weather input data for SWAT has been extracted from the climate model outputs

Climate Model : CanRCM4

Parent GCM : CanESM2

Grid resolution : 0.44 deg ~ 50 km

CORDEX Domain : NAM (North America)

Modeling Agency: Canadian Center for Climate

Modeling and Analysis (CCCma)

Experiments : Historical r1i1p1(1971-2000) - Baseline

: RCP 4.5 r1i1p1 (2071-2100) - Future

Land use pattern is considered same for the future scenario

Climate model – Salient Features

CORDEX NAM-44 Grid over Maitland Catchment

Climate Change Study - Inputs

Comparison of observed and baseline period precipitation

Observed data

Model baseline data

Bias in the two precipitations is removed using Bias correction factor

Climate Change Study – Bias Correction

Bias correction factor for precipitation

$$\delta_{m} = \frac{\sum_{i=1}^{n} P_{Obs,i}}{\sum_{i=1}^{n} P_{RCM,i}}$$
 where, P_{RCM} – model precipitation in base period P_{obs} – observed precipitation in base period

P_{obs} – observed precipitation in base period

Bias correction factor for minimum and maximum temperature

$$\delta_m = \frac{1}{n} \sum_{i=1}^n T_{Obs,i} - \frac{1}{n} \sum_{i=1}^n T_{RCM,i}$$
 where, P_{RCM} – model temperature in base period
$$P_{Obs} - observed \ temperature \ in \ base \ period$$

$$n - no. \ of \ years \ in \ base \ period$$

Monthly bias correction factor are computed

Climate Change Study - Bias Correction

Bias correction factor for precipitation

Climate Change Study - Inputs

Comparison of average monthly minimum temperature

Baseline

Future scenario RCP 4.5

Climate Change Study - Inputs

Comparison of average monthly maximum temperature

Baseline

Future scenario RCP 4.5

Monthly precipitation

Variation in precipitation in different periods:

Winter (Oct-Feb) - increase by 17%

Spring (Mar-May) – decrease by 3%

Summer (Jun-Sep) – decrease by 10%

Monthly Evapotranpiration (ET)

- Variation in ET in different periods:
 - Winter (Oct-Feb) increase by 96%
 - Spring (Mar-May) increase by 86%
 - Summer (Jun-Sep) decrease by 3%
- Peak ET shifts by 1-2 month

Monthly total water yield

Variation in total water yield in different periods:

Winter (Oct-Feb) – increase by **28%**

Spring (Mar-May) – decrease by 28%

Summer (Jun-Sep) – decrease by 50%

Variation in water budget w.r.t Baseline period (% change)

Period	Precipitation	ET	Surface Water	Ground Water	Water Yield
All year	2.4	16.8	-33.6	15.0	-10.3
Winter					
(Oct-Feb)	17.0	96.2	13.4	55.6	28.4
Spring					
(Mar-Apr)	-2.9	86.9	-51.4	44.1	-28.3
Summer					
(May-Sep)	-10.6	-2.6	-31.9	-70.5	-50.0

- Overall water yield of the watershed reduces
- Winter period shows increase in water yield
- Spring period shows equal decrease in water yield
- Summer period has significant reduction in water yield

Conclusions and Future Work

- SWAT hydrological model for Maitland catchment when forced with CanRCM4 climate model result, predicts:
 - Severely strained summer months with ~50% reduced water availability w.r.t. baseline
 - Considerably reduced surface water yield during spring period
 - Peak evapotranspiration (ET) is advanced by a month period with increased peak
- Change in hydrological regime has strong implications to agriculture

Future Work

 We proposed to perform SWAT simulation using ensemble of climate model outputs

Acknowledgements

Partial funding support by the following is gratefully acknowledged

 National Sciences and Engineering Research Council of Canada

University of Windsor

THANKYOU