Assessing the impact of projected climate changes on small coastal basins of the Western US

William Burke

Dr. Darren Ficklin

Dept. of Geography, Indiana University

Introduction

- How will climate change impact streamflow of coastal basins in the Western United States?
- Future water management will depend on understanding how streamflow is changing
- Modeling presents a method to better understanding future changes in hydrology

Coastal Basins

- Later streamflow timing as compared to mountainous basins
- Less exhaustively studied than mountainous basins in the Western US

FIG. 3. Trends in CT for each SDC. Trend values are given in days over the 61-yr period.

Sites

- Five sites along the West Coast
- WA, OR, and 3 in CA
- Chosen for proximity to the coast, geographic spacing, different climatic zones, and data availability

Site	River	Drainage (sq km)	Data Years
WA	Naselle River	142	80
OR	Siletz River	526	88
N. CA	Redwood Crk	718	58
Central CA	Big Sur River	121	59
S. CA	Arroyo Seco	42	95

Methods

- Soil and Water Assessment Tool (SWAT) (Neitsch, 2011)
- SWAT Calibration and Uncertainty Programs (CUP)
 - Calibration and validation using SUFI2
- Statistical analysis
 - Temperature and precipitation changes
 - Comparison of monthly means
 - GCM medians, 25th & 75th percentiles

Data

Data Type	Description	Source			
Elevation	1/3 arc second (~30 ft) resolution digital elevation model	USGS National Elevation Dataset			
Land Cover	30 meter resolution land cover data	National Land Cover Database (NLCD) 2011			
Soil	High resolution soils data (AWC, K sat, bulk density, depths)	USDA Soil Survey Geographic Database - SSURGO			
Streamflow	Daily streamflow gauge data from sites unaffected by human impacts	USGS Hydroclimatic Data Network - 2009			
Observed Climate	1960-2011 at 1/8 degree spatial resolution gridded daily and monthly data	Livneh et al. 2013 (derived from NOAA Cooperative Observer Stations)			
Projected Climate	Downscaled BCCA CMIP5 projected data for 2000-2099 at 1/8 degree spatial resolution gridded daily and monthly data -Representative Concentration Pathway (RCP) 8.5 (20 models) & 4.5 (19 models)	Reclamation, 2013			

Parameters

- 24 parameters used at each site
- Run from 3x 5x
 1000 iterations
 depending on site
- Run at daily time step

Parameter	Description					
Groundwater						
ALPHA_BF	Baseflow alpha factor (days)					
GW_DELAY	Groundwater delay (days)					
GWQMN	Threshold depth required for return flow to occur (mm)					
GW_REVAP	Groundwater "revap" coefficient					
REVAPMN	Threshold depth for "revap" to occur (mm)					
RCHRG_DP	Deep aquifer percolation fraction					
GW_SPYLD	Specific yield of the shallow aquifer (m3/m3)					
Soil						
SOL_BD	Moist bulk density					
SOL_K	Saturated hydraulic conductivity					
SOL_AWC	Available water capacity of the soil layer					
SOL_Z	Maximum rooting depth of soil profile					
Channel Flow						
ALPHA_BNK	Baseflow alpha factor for bank storage					
CH_N2	Manning's "n" value for the main channel					
CH_K2	Effective hydraulic conductivity in main channel alluvium					
Surface Runoff						
CN2	SCS runoff curve number					
ESCO	Soil evaporation compensation factor					
EPCO	Plant uptake compensation factor					
OV_N	Manning's "n" value for overland flow					
LAT_TTIME	Lateral flow travel time					
SLSOIL	Slope length for lateral subsurface flow					
PLAPS	Precipitation lapse rate					
TLAPS	Temperature lapse rate					
SURLAG	Surface runoff lag time					
RFINC	Rainfall adjustment					

- Using evaluation guidelines from Moriasi et al. 2007
- Nash-Sutcliffe > 0.5
- Percent bias +/- **25%**
- RMSE to standard deviation ratio (RSR) < 0.7
- Calibration: 1963-1986 Validation: 1987-2011

	C. CA		N. CA		OR		So. CA		WA	
	Cal	Val	Cal	Val	Cal	Val	Cal	Val	Cal	Val
NSE	0.83	0.77	0.84	0.78	0.91	0.80	0.76	0.61	0.87	0.81
PBIAS	-5.0	-22.1	-13.0	-22.2	-7.0	6.8	-55.6	-54.0	-6.6	-4.8
RSR	0.42	0.48	0.40	0.47	0.31	0.45	0.49	0.63	0.37	0.43

Observed Streamflow (m3/sec)

Washington 1970-1999 to 2070-2099 Temperature and Precipitation Change

Northern California 1970-1999 to 2070-2099 Temperature and Precipitation Change

Southern California 1970-1999 to 2070-2099 Temperature and Precipitation Change

10/14/2015 Month 15

Results

- Small changes in overall discharge. Increases in peak flow at both mid and late century
- Slight shift towards later timing in N. CA, otherwise so changes in timing
- Notable variation across models-25th & 75th percentiles indicative of high variability
- Large changes in temperature particularly S. CA
- Variable changes in precipitation, highly dependent on climate model

Future Work

- Focus on longer time series analysis
- Analyze variability and extreme events
- Assess the relative influence precipitation and temperature on streamflow
- Compare trends across sites are impacts in WA comparable to those in CA?

Thank You

References:

- Fritze, H., Stewart, I. T., & Pebesma, E. (2011). Shifts in western North American snowmelt runoff regimes for the recent warm decades. Journal of Hydrometeorology, 12(5), 989-1006.
- Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Asabe, 50(3), 885-900.
- Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.