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DISCLAIMER

This report documents SWAT-CUP, a computer program for calibration of SWAT models. SWAT-CUP4 is
a public domain program, and as such may be used and copied freely. The program links SUFI2, PSO,
GLUE, ParaSol, and MCMC procedures to SWAT. It enables sensitivity analysis, calibration, validation,
and uncertainty analysis of SWAT models. SWAT-CUP 2012 has been tested for all procedures prior to
release. However, no warranty is given that the program is completely error-free. If you encounter
problems with the code, find errors, or have suggestions for improvement, please write to SWAT-CUP
Google group at swat-cup@googlegroups.com
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Food for thought in calibration and application of watershed models

Calibration and uncertainty analysis of distributed watershed models is beset with a few serious issues
that deserve the attention and careful consideration of researchers. These are: 1) Parameterization of
watershed models. 2) Definition of what is a “calibrated watershed model” and what are the limits of its
use. 3) Conditionality of a calibrated watershed model. 4) Calibration of highly managed watersheds
where natural processes play a secondary role, and 5) uncertainty and non-uniqueness problems. These
issues are briefly discussed here.

1) Model Parameterization

Should a soil unit appearing in various locations in a watershed, under different landuses and/or climate
zones, have the same or different parameters? Probably it should have different parameters. The same
argument could be made with all other distributed parameters. How far should one go with this
differentiation? On the one hand we could have thousands of parameters to calibrate, and on other we
may not have enough spatial resolution in the model to see the difference between different regions.
This balance is not easy to determine and the choice of parameterization will affect the calibration
results. Detailed information on spatial parameters is indispensable for building a correct watershed
model. A combination of measured data and spatial analysis techniques using pedotransfer functions,
geostatistical analysis, and remote sensing data would be the way forward.

2) When is a watershed model calibrated?

If a watershed model is calibrated using discharge data at the watershed outlet, can the model be called
calibrated for that watershed? If we add water quality to the data and recalibrate, the hydrologic
parameters obtained based on discharge alone will change. Is the new model now calibrated for that
watershed? What if we add discharge data from stations inside the watershed? Will the new model give
correct loads from various landuses in the watershed? Perhaps not, unless we include the loads in the
calibration process (see Abbaspour et al., 2007). Hence, an important question arises as to: “for what
purpose can we use a calibrated watershed model?” For example: What are the requirements of a
calibrated watershed model if we want to do landuse change analysis? Or, climate change analysis? Or,
analysis of upstream/downstream relations in water allocation and distribution? Can any single
calibrated watershed model address all these issues? Can we have several calibrated models for the
same watershed where each model is applicable to a certain objective? Note that these models will
most likely have different parameters representing different processes (see Abbaspour et al. 1999).

3) Conditionality of calibrated watershed models

Conditionality is an important issue with calibrated models. This is related to the previous question on
the limitation on the use of a calibrated model. Calibrated parameters are conditioned on the choice of
objective function, the type, and numbers of data points and the procedure used for calibration, among
other factors. In a previous study (Abbaspour et al. 1999), we investigated the consequences of using
different variables and combination of variables from among pressure head, water content, and
cumulative outflow on the estimation of hydraulic parameters by inverse modeling. The inverse study



combined a global optimization procedure with a numerical solution of the one-dimensional variably
saturated Richards flow equation. We analyzed multi-step drainage experiments with controlled
boundary conditions in large lysimeters. Estimated hydraulic parameters based on different objective
functions were all different from each other; however, a significant test of simulation results based on
these parameters revealed that most of the parameter sets produced similar simulation results.
Notwithstanding the significance test, ranking of the performances of the fitted parameters revealed
that they were highly conditional with respect to the variables used in the objective function and the
type of objective function itself. Mathematically, we could express a calibrated model M as:

M =M (4|p,g,w,b,v,m,....)

where Gis a vector of parameters, p is a calibration procedure, g is the objective function type , wis a
vector of weights in the objective function, b is the boundary conditions, v is the variables used in the
objective function, m is the number of observed Vv’s, etc. Therefore, a calibrated model is conditioned on
the procedure used for calibration, on the objective function, on the weights used in the objective
function, on the initial and boundary conditions, on the type and length of measured data used in the
calibration, etc. Such a model can clearly not be applied for just any scenario analysis.

4) Calibration of highly managed watersheds

In highly managed watersheds, natural processes play a secondary role. If detailed management data is
not available, then modeling these watersheds will not be possible. Examples of managements are dams
and reservoirs, water transfers, and irrigation from deep wells. In Figure 1a the effect of Aswan dam on
downstream discharge before and after its operation is shown. It is clear that without the knowledge of
dam’s operation, it would not be possible to model downstream processes. Figure 1b shows the effect
of wetland on discharge upstream, in the middle, and downstream of Niger Inland Delta.
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Figure 1. left) Effect of Aswan dam on down stream discharge before and after its operation in 1967.
right) The influence of Niger Inland Delta on the through flow at upstream, within, and downstream of
the wetland. (After Schuol et al., 2008a,b)



In Figure 2 the effect of irrigation on actual ET and soil moisture is illustrated in Esfahan, Iran. Esfahan is
a region of high irrigation with a negative water balance for almost half of the year.
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Figure 2. lllustration of the differences in predicted actual ET (a) and soil moisture (b) with and without
considering irrigation in Esfahan province, Iran. The variables are monthly averages for the period of
1990-2002. (After Faramarzi et al., 2009)

In the study of water resources in Iran, Faramarzi et al., (2008) produced a “water management map’
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(Figure 3) in order to explain the calibration results of a hydrologic model of the country.
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Figure 3. Water management map of Iran showing some of man’s activities during 1990-2002. The map
shows locations of dams, reservoir, water transfers and groundwater harvest (background shows
provincial-based population). After Faramarzi et al., (2009).



5) Uncertainty issues

Another issue with calibration of watershed models is that of uncertainty in the predictions. Watershed
models suffer from large model uncertainties. These can be divided into: conceptual model uncertainty,
input uncertainty, and parameter uncertainty. The conceptual model uncertainty (or structural
uncertainty) could be of the following situations: a) Model uncertainties due to simplifications in the
conceptual model, b) Model uncertainties due to processes occurring in the watershed but not included
in the model, c) Model uncertainties due to processes that are included in the model, but their
occurrences in the watershed are unknown to the modeler, and d) Model uncertainties due to processes
unknown to the modeler and not included in the model either!

Input uncertainty is as a result of errors in input data such as rainfall, and more importantly, extension
of point data to large areas in distributed models. Parameter uncertainty is usually caused as a result of
inherent non-uniqueness of parameters in inverse modeling. Parameters represent processes. The fact
that processes can compensate for each other gives rise to many sets of parameters that produce the
same output signal. A short explanation of uncertainty issues is offered below.

5.1) Conceptual model uncertainty

a) Model uncertainties due to simplifications in the conceptual model. For example, the assumptions in
the universal soil loss equation for estimating sediment loss, or the assumptions in calculating flow
velocity in a river. Figures 4a and 4b show some graphical illustrations.

Fig. 4. (left) A simplified conceptual model of hydrology in a watershed where revap is ignored. (right) A
natural process near the source of Yellow River in China playing havoc with river loading based on the
USLE!

b) Model uncertainties due to processes occurring in the watershed but not included in the model. For
example, wind erosion (Fig. 5 left ), erosions caused by landslides (Fig. 5 right), and the “second-storm
effect” effecting the mobilization of particulates from soil surface (see Abbaspour et al., 2007).



Figure 5. Natural processes not included in most watershed models but with a large impact on hydrology
and water quality of a watershed, albeit for a short period

c) Model uncertainties due to processes that are included in the model, but their occurrences in the
watershed are unknown to the modeler or unaccountable; for example, various forms of reservoirs,
water transfer, irrigation, or farm management affecting water quality, etc. (Fig. 6, 7).

Fig. 6. Agricultural management practices such as water withdrawal and animal husbandry can affect
water quantity and quality. These, may not always be known to the modeller.
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Fig. 7. Water control and water diversions may change the flow in ways that are unknown to the
modeller and, hence, can not be accounted for in the model.

d) Model uncertainties due to processes unknown to the modeler and not included in the model either!
These include dumping of waste material and chemicals in the rivers, or processes that may last for a
number of years and drastically change the hydrology or water quality such as large-scale constructions
of roads, dams, bridges, tunnels, etc. Figure 8 shows some situations that could add substantial
“conceptual model error” to our analysis.

Fig. 8 Large construction projects such as roads, dams, tunnels, bridges, etc. can change river flow and
water quality for a number of years. This may not be known or accountable by the modeller or the model
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5.2) Input Uncertainty

In addition to model uncertainty, there are uncertainties due to errors in input variables such as rainfall
and temperature, as point measurements are used in distributed models. It is quite difficult to account
for input uncertainty. Some researchers propose treating inputs as random variable, which allows fitting
them to get better simulations. As model outputs are very sensitive to input data, especially rainfall,
care must be taken in such approaches. In mountainous regions, input uncertainty could be very large.

5.3) Parameter non-uniqueness

A single valued parameter results in a single model signal in direct modeling. In an inverse application,
an observed signal, however, could be more-less reproduced with thousands of different parameter sets.
This non-uniqueness is an inherent property of inverse modeling (IM). IM, has in recent years become a
very popular method for calibration (e.g., Beven and Binley, 1992, 2001; Abbaspour et al., 1997, 2007,
Duan et al., 2003; Gupta et al., 1998). IM is concerned with the problem of making inferences about
physical systems from measured output variables of the model (e.g., river discharge, sediment
concentration). This is attractive because direct measurement of parameters describing the physical
system is time consuming, costly, tedious, and often has limited applicability. Because nearly all
measurements are subject to some uncertainty, the inferences are usually statistical in nature.
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Figure 9. Example of parameter non-uniqueness showing two similar discharge signals based on quite
different parameter values

Furthermore, because one can only measure a limited number of (noisy) data and because physical
systems are usually modelled by continuum equations, no hydrological inverse problem is really
uniquely solvable. In other words, if there is a single model that fits the measurements there will be
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many of them. An example is shown in Figure 9 where two very different parameter sets produce signals
similar to the observed discharge. Our goal in inverse modelling is then to characterize the set of models,
mainly through assigning distributions (uncertainties) to the parameters, which fit the data and satisfy
our presumptions as well as other prior information.

The Swiss cheese effect

The non-unigueness problem can also be looked at from the point of view of objective function. Plotting
the objective-function response surface for two by two combinations of parameters could be quite
revealing. As an example, see Figure 10 where the inverse of an objective function is plotted against two
parameters, hence, local minima are shown as peaks. Size and distribution of these peaks resembles the
mysterious holes in a block of Swiss Emmentaler cheese where the size of each hole represents the local
uncertainty. Our experience shows that each calibration method converges to one such peak (see the
papers by Yang et al., 2008, Schuol et al.,, 2008a, and Faramarzi et al., 2008). Yang et al., (2008)
compared Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992), Parameter
Solution (ParaSol) (Van Griensven and Meixner, 2003a), Sequential Uncertainty Fitting (SUFI2)
(Abbaspour et al., 2004; 2007), and Markov chain Monte Carlo (MCMC) (e.g., Kuczera and Parent, 1998;
Marshall et al., 2004; Vrugt et al., 2003; Yang et al., 2007) methods in an application to a watershed in
China. They found that these different optimization programs each found a different solution at
different locations in the parameter spaces with more less the same discharge results. Table 1 has a
summary of the comparison.

To limit the non-uniqueness, the objective function should be made as comprehensive as possible by
including different fluxes and loads (see Abbaspour et al., 2007). The downside of this is that a lot of
data should be measured for calibration. The use of remote sensing data, when it becomes available,
could be extremely useful. In fact we believe that the next big jump in watershed modeling will be made
as a result of advances in remote sensing data availability.

Further errors could also exist in the very measurements we use to calibrate the model. These errors
could be very large, for example, in sediment data and grab samples if used for calibration. Another
uncertainty worth mentioning is that of “modeler uncertainty”! It has been shown before that the
experience of modelers could make a big difference in model calibration. We hope that packages like
SWAT-CUP can help decrease modeler uncertainty by removing some probable sources of modeling and
calibration errors.

On a final note, it is highly desirable to separate quantitatively the effect of different uncertainties on
model outputs, but this is very difficult to do. The combined effect, however, should always be
guantified on model out puts.
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Figure 10. A multidimensional objective function is “multimodal” meaning that there are many areas of
good solutions with different uncertainties much like the mysterious holes in a slice of Swiss cheese.
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Table 1. Summary statistics comparing different calibration uncertainty procedures.

Criterion GLUE ParaSol SUFI-2 Bayesian inference with cont.
autoregr. error model
MCMC IS
Goal function Nash-Sutcliffe Nash-Sutcliffe Nash-Sutcliffe post. prob. post. prob.
density density
a__CN2.mgt -16.8 (-29.6, - -21.0(-21.9, - -26.9 (-30.0,-7.2) -14.2 (-16.8, - -19.60
v__ESCO.hru 9.8)" 20.1) 0.82(0.43, 1.0) 11.6) 0.62
v__EPCO.hru 0.76 (0.02, 0.97) 0.67 (0.65, 0.69) 1(0.34,1.0) 0.74 (0.63, 0.75) 0.27
r__SOL_K.sol 0.22 (0.04, 0.90) 0.16 (0.13, 0.20) -0.1 (-0.58, 0.34) 0.94 (0.39, 0.98) 0.01
a__SOL_AWC.sol -0.16 (-0.36, -0.37(-0.41, - 0.07 (0.05, 0.15) -0.29 (-0.31, 0.78) 0.05
v__ALPHA_BF.gw 0.78) 0.34) 0.51(0.23,0.74) 0.12 (0.1, 0.13) 0.91
v__GW_DELAY.gw 0.11 (0.01,0.15) | 0.07 (0.08, 0.08) | 190.07 (100.2,300) | 0.14(0.11, 0.15) 33.15
r__SLSUBBSN.hru 0.12 (0.06,0.97) | 0.12(0.08, 0.13) | -0.52(-0.60, 0.03) 25.5(17.8, 33.3) 0.58
a_ CH_K2.rte 159.58 (9.7, 107.7 (91.2,115.2) | 83.95 (69.4, 150.0) -0.55 (-0.56, 147.23
a__OV_N.hru 289.3) -0.59 (-0.60, - 0.06 (0.00, 0.11) 0.15) 0.08
zodry -0.45 (-0.56, 0.58) - 78.3 (68.0, 86.2) 0.87
2Oet 0.46) 35.70 - 0.12 (0.00, 0.19) 2.30
thry 78.19 (6.0, 144.8) (27.72,37.67) - 0.93(0.81, 1.10) 28.47
et 0.05 (0.00, 0.20) 0.11 (0.07, 0.10) - 2.81(2.4,3.9) 0.92
- - 38.13 (29.5, 53.8)
- 3.42 (2.4, 8.0)
NS for cal (val) 0.80 (0.78) 0.82 (0.81) 0.80 (0.75) 0.77 (0.77) 0.64 (0.71)
R for cal (val) 0.80 (0.84) 0.82 (0.85) 0.81 (0.81) 0.78 (0.81) 0.70 (0.72)
LogPDF for cal (val) -1989 (-926) -2049 (-1043) -2426 (-1095) -1521 (-866) -1650 (-801)
*p-factor for cal 79% (69%) 18% (20%) 84% (82%) 85% (84%) -
(val)
*d-factor for cal 0.65 (0.51) 0.08 (0.07) 1.03 (0.82) 1.47 (1.19) -
(val)
Uncertainty All sources of Parameter All sources of Parameter Parameter
described by uncertainty uncertainty only uncertainty uncertainty only uncertainty
parameter only
uncertainty
Difficulty of very easy easy easy more complicated more
implement. complicated
Number of runs 10000 7500 1500 + 1500 5000 + 20’000 + 100000
20’000

! ¢(a, b) for each parameter means: c is the best parameter estimate, (a,b) is the 95% parameter

uncertainty range except SUFI-2 (in SUFI-2, this interval denotes the final parameter distribution).
2 the Odry, Owets Tdry, aNd Tyer Used to calculate the Calculate the logarithm of the posterior probability

density function (PDF) are from the best of MCMC.
® p-factor means the percentage of observations covered by the 95PPU
* d-factor means relative width of 95% probability band (After Yang et al., 2008)
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Conceptual basis of the SUFI-2 uncertainty analysis routine

The “deterministic” approach to calibration is now outdated and unacceptable. Example of a
deterministic optimization is “trial and error”. Meaning you keep adjusting parameters until you get
some kind of a reasonable match between simulation and observation. Reporting this as a calibrated
model, in my opinion is wrong, and will not stand in any court of law, if it comes to that. Here, we will
not further discuss the deterministic approaches that result in a single set of parameters claiming to
represent the “best simulation”.

In “stochastic” calibration, we recognize the errors and uncertainties in our modeling work and try to
capture, to some degree, our ignorance and lack of understanding of the processes in natural systems.
There is an intimate relationship between calibration and uncertainty (Abbaspour, et al., 2015).
Reporting the uncertainty is not a luxury in modeling, it is a necessity. Without the uncertainty,
calibration is meaningless and misleading. Furthermore, any analysis with the calibrated model must
include the uncertainty in the result by propagating the parameter uncertainties.

In SUFI-2, uncertainty in parameters, expressed as ranges (uniform distributions), accounts for all
sources of uncertainties such as uncertainty in driving variables (e.g., rainfall), conceptual model,
parameters, and measured data. Propagation of the uncertainties in the parameters leads to
uncertainties in the model output variables, which are expressed as the 95% probability distributions.
These are calculated at the 2.5% and 97.5% levels of the cumulative distribution of an output variable
generated by the propagation of the parameter uncertainties using Latin hypercube sampling. This is
referred to as the 95% prediction uncertainty, or 95PPU. These 95PPUs are the model outputs in a
stochastic calibration approach. It is important to realize that we do not have a single signal
representing model output, but rather an envelope of good solutions expressed by the 95PPU,
generated by certain parameter ranges.

In SUFI2, we want that our model result (95PPU) envelops most of the observations. Observation, is
what we have measured in the natural system. Observation is important because it is the culmination of
all the processes taking place in the region of study. The argument, however naive, is that if we capture
the observation correctly with our model, then we are somehow capturing correctly all the processes
leading to that observation. The problem, of course, is that often a combination of wrong processes in
our model may also produce good simulation results. For this reason, the more variables (representing
different processes) we include in the objective function, the more likely we are to avoid the wrong
processes.

To quantify the fit between simulation result, expressed as 95PPU, and observation expressed as a single
signal (with some error associated with it) we came up with two statistics: P-factor and R-factor (see
Abbaspour et al., 2004, 2007 references provided in the reference list of SWAT-CUP). P-factor is the
percentage of observed data enveloped by our modeling result, the 95PPU. R-factor is the thickness of
the 95PPU envelop. In SUFI2, we try to get reasonable values of these two factors. While we would like
to capture most of our observations in the 95PPU envelop, we would at the same time like to have a
small envelop. No hard numbers exist for what these two factors should be, similar to the fact that no
hard numbers exist for R? or NS. The larger they are, the better they are. For P-factor, we suggested a
value of >70% for discharge, while having R-factor of around 1. For sediment, a smaller P-factor and a
larger R-factor could be acceptable.

SUFI2 operates by performing several iterations, usually at most <5. In each iteration, the parameter
ranges get smaller zooming on a region of the parameter space, which produced better results in the
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previous iteration. Naturally, as parameter ranges get smaller, the 95PPU envelop gets smaller, leading
to smaller P-factor and smaller R-factor. As each iteration zooms into a better region of the parameter
space, obtained by the previous iteration, it is going to find a better “best” solution. So, if you have NS as
your objective function, then you will get a better NS in subsequent iterations, but the P-factor and R-
factor will decrease because of narrower parameter ranges. But the idea is not to find that so called
“best simulation”. Because, 1) there are always better simulations, and 2) the difference between the
“best simulation” and the “next best simulation” and the “next next best simulation” is usually
statistically insignificant (e.g., NS=0.83 vs NS=0.81 are probably not significantly different), meaning that
they could both be identified as the best simulations. But while the differences are insignificant in terms
of the objective function value, they are very significant in terms of parameters values. Therefore, the
next-best solution cannot be ignored.

The concept behind the uncertainty analysis of the SUFI-2 algorithm is depicted graphically in the Figure
below. This Figure illustrates that a single parameter value (shown by a point) leads to a single model
response (Fig. a), while propagation of the uncertainty in a parameter (shown by a line) leads to the
95PPU illustrated by the shaded region in Figure b. As parameter uncertainty increases, the output
uncertainty also increases (not necessarily linearly) (Fig. c). Hence, SUFI-2 starts by assuming a large
parameter uncertainty (within a physically meaningful range), so that the measured data initially falls
within the 95PPU, then decreases this uncertainty in steps while monitoring the P-factor and the R-
factor. In each step, previous parameter ranges are updated by calculating the sensitivity matrix
(equivalent to Jacobian), and equivalent of a Hessian matrix, followed by the calculation of covariance
matrix, 95% confidence intervals of the parameters, and correlation matrix. Parameters are then
updated in such a way that the new ranges are always smaller than the previous ranges, and are
centered around the best simulation (for more detail see Abbaspour et al., 2004, 2007).

A conceptual illustration of the relationship between parameter uncertainty and prediction
uncertainty

The goodness of fit and the degree to which the calibrated model accounts for the uncertainties are
assessed by the above two measures. Theoretically, the value for P-factor ranges between 0 and 100%,
while that of R-factor ranges between 0 and infinity. A P-factor of 1 and R-factor of zero is a simulation
that exactly corresponds to measured data. The degree to which we are away from these numbers can
be used to judge the strength of our calibration. A
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larger P-factor can be achieved at the expense of a larger R-factor.

Hence, often a balance must be reached between the two. When acceptable values of R-factor and P-
factor are reached, then the parameter uncertainties are the desired parameter ranges. Further
goodness of fit can be quantified by the R* and/or Nash-Sutcliff (NS) coefficient between the
observations and the final “best” simulation. It should be noted that we do not seek the “best
simulation” as in such a stochastic procedure the “best solution” is actually the final parameter ranges.

If initially we set parameter ranges equal to the maximum physically meaningful ranges and still cannot
find a 95PPU that brackets any or most of the data, for example, if the situation in Figure d occurs, then
the problem is not one of parameter calibration and the conceptual model must be re-examined.

SUFI-2 as an optimization algorithm

For a description of SUFI-2 see Abbaspour et al., (2004, 2007). References are provided in the Reference
directory of SWAT-CUP.

For a calibration protocol see Abbaspour et al., (2015).
http://www.sciencedirect.com/science/article/pii/S0022169415001985
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SWAT-CUP

Automated model calibration requires that the uncertain model parameters are systematically changed,
the model is run, and the required outputs (corresponding to measured data) are extracted from the
model output files. The main function of an interface is to provide a link between the input/output of a
calibration program and the model. The simplest way of handling the file exchange is through text file
formats.

SWAT-CUP is an interface that was developed for SWAT. Using this generic interface, any
calibration/uncertainty or sensitivity program can easily be linked to SWAT. A schematic of the linkage
between SWAT and five optimization programs is illustrated in the Figure below.
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Step-by-step Creating of SWAT-SUFI2 Input Files

\

SUFI2_LH_sample.exe < par_inf.txt

v

!

par_val.txt SUFI2_new_pars.exe

v

BACKUP —>» SWAT_Edit.exe <—SUFI2_swEdit.def

v

Modified
SWAT inputs

v

swat.exe

v

SWAT
outputs

v

SUFI2_extract_rch.def _y ~ SUFI2_extract_rch.exe

v |

*out — SUFI2 goal fnexe — goaltxt —p

\—> SUFI12_95ppu.exe

observed.txt

Is
calibration
criteria

atisfied?

—>
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1. Before SWAT-CUP

Become familiar with SWAT parameters. They are all explained in the SWAT I/O manual. Also, read the
theory and application of SWAT-SUFI2 at the beginning of this manual and in the following papers:
- Thur watershed paper (Abbaspour et al., 2007)

- Landfill application in Switzerland (Abbaspour et al., 2004)

- The continental application in Africa (Schuol et al, 2008a,b) and Europe (Abbaspour et al, 2014)

- The country-based application in Iran (Faramarzi et al., 2008)

- The comparison of different optimization programs (Yang et al., 2008)

- The parallel processing paper (Rouholahnejad et al., 2013)

- The Black Sea application paper (Rouholahnejad et al., 2014)

- The application to entire Europe (Abbaspour et al., 2015)
(http://www.sciencedirect.com/science/article/pii/S0022169415001985)

And others provided in the C:\SWAT\SWAT-CUP\ExternalData\References

2. Start SWAT-CUP

Install the SWAT-CUP in C:\SWAT\SWAT-CUP, the same directory as the SWAT and start the program by
pressing the SWAT-CUP icon on the desktop:

3. Open a Project

- To open a new or old project: Press the Q symbol at the top left corner

me B = SWAT-CUP

‘J Home H Parallel Processing || Utility Programs || Layout |

D %€ Cut »Undo | ®Find & Next Bookmark M Save & H‘ @ @ P @ @ @ %

Copy Redo ' & Replace & Previous Bookmark M4 Save All

Paste Calibrate... Save Iteration Validate...  Print = Advanced Close Help About License anc
® Delete  Select All Clear Bookmarks Preview  Writing All Activation~
Edit Calibration - Validation Print Tools Window Help

Project Explorer »
& GRRch ®8HRU -

and choose a “New” or “Open” an old project
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- For a new project locate a SWAT “TxtInOut” directory. Any file with “TxtInOut” in the name string

would be acceptable

-

New Project Wizard

Import a swat TxtlnOut directory

Please Browse a swat TxtInOut directory as data source of your project to import

)

TxtInOQut Location:
S rojects\example_TxtInOut

Browse... |

- Choose SWAT and processor versions

#

New Project Wizard

SWAT Version
Please choose the SWAT Version.

SWAT Version:

2012 |
Processor Architecture:

64-bit -]

- Select a program from the list provided (SUFI2,GLUE, ParaSol, MCMC, PSO). A detailed explanation of

the SUFI-2 procedure is offered here, but all programs follow the same format.

=

New Project Wizard

Project Type

Choose the calibration method for project

516
M

Project type:

& sufi2

~ Help ?|

- Give a name to the project and a location where SWAT-CUP project can be saved.
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Note the default addition to the name provided in the window to the right of “Project Name” window.
For a SUFI2 project, the full SWAT-CUP directory name in the example below would be
test_1.Sufi2.SwatCup, which will reside in c:\ArcSWAT-projects\Black_Sea directory.

e

New Project Wizard

Project Name and Location

Please choose the project name and location to create in

Project Name:
test_1 | |.Sufi2.SwatCup |

Project Location:

Browse... |

At this point The program creates the desired project directory and copies there all TxtInOut files from
the indicated location into the SWAT-CUP project directory. It also creates a directory called “Backup” in
the same SWAT-CUP project directory and copies all SWAT TxtInOut file there. The parameters in the
files in the Backup directory serve as the default parameters and do not changed during the calibration
process. The Backup directory is always needed - as its original form — because, relative changes that
have been made to the parameters during calibration, were made relative to the parameter values in
the Backup directory. Therefore, it is important that the Backup directory is never changed.

4. SWAT Output Files

You can calibrate the model based on the variables from output.rch, output.hru, output.sub, output.res,
output.mgt, and now also hourly-generated files. However, the interface only shows .rch, .hru, and .sub
files. As most often we have either discharge, nutrients data, or sediment data, only these are shown in
the interface. Just click and activate which file you want to use (i.e., your observed variables reside in
which SWAT file(s)).

=] ® - test_1.5ufi2 - SWAT-CUP
lig || Home || Parallel Processing ” utility Programs H Layout ‘
D ¢ Cut Undo | % Find & Next Bookmark H Save ¢ ﬂ @ @ ") @ g 6 %\\
; a B Tioa , 3 . : S
Paste & Copy Redo % Replace & Previous Bookmark  # Save All Calibrate... Save Iteration Validate... Print Advanced Close Help About License and
*® Delete ' Select All Clear Bookmarks Preview  Writing All Activation -
Edit Calibration - validation Print Tools Window Help
Project Explorer »
" G@Rch ®@HRU &8Sub
R Jiost_i]

/ Calibration Inputs

W Executable Files

Calibration Outputs

@ Sensitivity analysis

@ Maps

<7 Utility Programs
Iteration History

-

- -
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5. Calibration Inputs

Under the Calibration Inputs edit the following files:

BacR -
| ; Home || Parallel Processing || Utility Programs ||
B X cut Undo @ % Find & Next Bookmark
TE & Copy Redo | #.Replace | & Previous Bookmark
® Delete = Select All Clear Bookmarks
Edit
Project Explorer L
" G@Rch #3HRU @8 Sub
E""E@St_l
L::_I-----_ Pl Calibration Inputs
l_._' Par_inf.txt
- |- SUFI2_swEdit.def
l_._' File.Cio

Absolute_ SWAT_Values.txt
-/ Observation
-/ Extraction
1 Objective Function
- // No Observation

il Tt

...[4....[4
|, -
N

- Par_inf.txt

This file resides in the project directory in SUFI2.IN directory. It contains input parameters to be
optimized. An example is provided, which needs to be edited by the user. The examples shows the
format of the file. Edit this to your needs. A text view and a form view is provided. The form view helps
with finding the correct parameter syntax or expression. All SWAT parameters (up to the time of
compilation of the last swat-cup version) can be found here. The form view follows standard Windows
protocol and the users are advised to familiarize themselves with this module by testing different
features of it. What you do in the form view, appears in the text view and vice versa. Users are also
encouraged to try different things in the form view and look at the them in the text view to become
familiar with this important and unique feature of SWAT-CUP.

This file contains the number of parameters to be optimized and the number of simulations to make in
the current iteration. SUFI2 is iterative, each iteration contains a number of simulations. Around 500
simulations are recommended in each iteration. But if a swat project takes too long to run, fewer
number of simulations (200-300) in each iteration could be acceptable. Parameters are sampled using
Latin hypercube scheme explained later in the manual. Usually, not more than 4 iterations are sufficient
to reach an acceptable solution. A parallel processing module is also available to speed up the
calibration process.

To learn more about “parameterization” and parameter qualifiers r__, v_ , and a__ please see the
section on “parameterization” below.
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rograms Layout Parameterization |
mark H Save + 5 @

peiaEEeavelall Add anew Insertanew Import New
irks parameter parameter = Parameters

New Parameter
] Par_inf.bxt x

2 -_inf.txt
~ =" |contains input parameters to be optimized. After a complete iteration, review the suggested new parameters in the "Calibration Outputs \ new_pars.txt", (change if necessary)

Number Of Parame Number Of Simulat

| aipran) 500 3
Parameters:
2 Basic Information > Value > Filter Conditions (optional) “, Particular Settings
# |Par Name |Fi|e Name ‘File E... |Method ‘Min ‘Max Hydm...|50il Te...|Lan... ‘Subbasins ‘Slnpe |Cnnditi... Layers/C... |Pmperties |
1 CN2 .mgt ' Relative 0.2 02 (Al
r 2 ALPHA_BF -gw v Replace 0 1 (Al ]
G 3 GW_DELAY .gw v Replace 30 450 (Al
| | 4 GWQMN .gw v Replace 0 2 (All)
4- - : Number of Parameters- (the program-only reads the first 4 parameters or any number- indicated here)
500 - : ‘number-of -simulations
r_ CN2.mgt —0.2 0.2
v ?XLPHA_EF.gw 0.0 1.0
v__GW_DELAY.gw 30.0 450.0
v__ GWQMN . gw 0.0 2.0

What parameters to use depend on the objective function. Initially, in every case, flow should be
calibrated and then water quality variables added one at time (see Abbaspour et al.,, 2007, 2015 for
parameter choices and calibration protocol).

- SUFI2_sweEdit.def

This file contains the beginning and the ending simulation years. Please note that the beginning
simulation does not include the warm up period. SWAT simulates the warm up period but does not
print any results, therefore, these years are not considered in SWAT-CUP. You can check output.rch file
of SWAT to see when the beginning and the ending simulation times is.

|Par_infixt | []SUFI2_swEdit.def x|

© FI2_swEdit.def
l e Contains the beginning and the ending simulations.

1 :-starting-simulation number
I 500| : ending - simulation number
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- File.cio

This is a SWAT file. It is put here for convenience. What you need from this file are the simulation years
and the number of warm-up years (NYSKIP) to correctly provide SWAT-CUP with beginning and end year
of simulation. It is recommended that you have 2-3 years of warm up period.

General Information/Watershed Configuration:
fig.fig
15 | NBYR : Number of years simulated
1987 | ' IYR : Beginning year of simulation
1 | 'IDAF : Beginning- julian day of simulation
365 | 'IDAL:: Ending julian -day of -simulation

Output - Information:

0 | -IPRINT: 'print code: (month, 'day, ' year)

3 | "NYSKIP: number of years-to skip output printing/summarization

0 | ILOG: streamflow print code: l=print log of streamflow

0 | ' IPRP: print code for output.pst file: 1= print pesticide output

Miss-specifying the correct dates is the cause of biggest user error! Please note the following:

- Inthe above example, beginning year of SWAT simulation is 1987, end year is 2001

- There are 3 years of warm up period as indicated by NYSKIP. Therefore, SWAT output files
contain data from 1990 to 2001. These dates are of interest to SWAT-CUP. So, in SWAT-CUP
beginning year is 1990 and end year is 2001.

- Also note that SWAT-CUP requires the IDAF to be at the beginning of the year (always 1) and
IDAL to go to the end of the year (365 or 366 for leap years). Therefore SWAT simulation should
always be from the beginning to the end of the year. So your climate data must be from the
beginning to the end of the year.

- Absolute_SWAT_Values.txt

All parameters to be fitted should be in this file plus their absolute min and max ranges. Currently most,
but perhaps not all parameters are included in this file. Simply add to it the parameters that don’t exist.
The SWAT _Edit.exe program, that replaces parameters in the SWAT files, does not allow parameters
beyond this range into SWAT files.

[ parinftxt | [|SUFI2_swEditdef | L File.Cio | |]Absolute_SWAT_Values.txt x|

- olute SWAT_Values.bxt

e Y] parameters to be fitted should be in this file plus their absolute min and max ranges. (not all swat parameters are currently included in this file...)

V/ .gw

SHALLST 0 50000 Initial- depth of water in the shallow aquifer  (mm).

DEEPST 0 50000 Initial depth of water in-the deep aquifer- (mm).

GW_DELAY 0 500 Groundwater delay (days) .

ALPHA BF 0 il Baseflow alpha factor- (days).

GWOMN 0 5000 Treshold depth of water in- the shallow aquifer required for return flow to occur  (mm). etc
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6. Observation

Under Observation are three files that contain the observed variables. Observed variables correspond
to the variables in output.rch, output.hru, and output.sub, output.res, and output.mgt files, although
the latter two do not appear in SWAT-CUP.

Project Explorer L
" G@Rch ®@HRU @8 Sub

B [ test_1

=8 _/ Calibration Inputs

------- |-~ Par_inf.bxt

------- || SUFI2_swEdit.def

------- || File.Cio

------- || Absolute_SWAT_Values.bd

B crvtion

[+ Extraction
m AV PTG Sy

Initially, all options are deactivated. To activate you need to choose which SWAT file contains the
simulated data (step 4 above). Variables from different files can be included to form a multi-component
objective function. Simply only edit the file(s) that applies to your project and do not worry about the
ones that don’t. The format should be exactly as shown in the examples provided in the program. The
three files Observed rch.txt, Observed hru.txt, and Observed bsn.txt can be edited here, but
observed_res.txt for reservoir data and observed _mgt.txt for crop yield are also available that could be
edited directly in the \SUFI2.IN directory in the SWAT-CUP project directory.

Missing values

The format of the observation files are as shown in the examples provided. These files could easily be
made in Excel and pasted here. In the observed files You may have missing data that can be accounted
for as shown in the example files and explained below.

The first column has sequential numbers from the beginning of simulation time period. In the example
below, the first 10 months are missing so the first column begins from 11. Also, months 18,19, and 20
are missing.
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FLOW _OUT 7 : this is the name of the variable and the subbasin number to be in
121 : number - of data points for this variable as it follows below. First colum
:-of the -simulation, rsecond -column-is - variable name-and-date- (format: arbit

11 FLOW_OUT 11 1990 2.08
12 FLOW_OUT 12 1990 12.51

13 FLOW OUT 1 1991 22.18
14 FLOW_OUT 2 1991 44.61
15 FLOW_OUT 3 1991 35.09
16 FLOW OUT 4 1991 53.52
17 FLOW_OUT 5 1991 85.52
21 FLOW_OUT 9 1991 23.12

22 FLOW_OUT 10 1991 5.82

23 FLOW OUT 11 1991 20.21
24 FLOW OUT 12 1991 28.91
25 FLOW OUT 1 1992 B7.34

The second column has an “arbitrary format” but it should be one connected string. Here, it is showing
the variable name, month, and year. Third column is the variable value.

If base flow is separated, and dynamic base flow is used, then a forth column indicating the base flow
should also be added. The example of an observation file with base flow is given in observed+.txt
in .\SUFI2.IN directory.

All other observation_*.txt files have the same format. This file tells the extract programs of SWAT-CUP
what to extract from the SWAT output files.

The observed_rch.txt files can contain many variables such as discharge, sediment, nitrate, etc. which
appear in the SWAT output file output.hru. Simply use the same format for all variables as shown in the
examples. Also, for the variables name, be consistent in all SWAT-CUP files.

7. Extraction

Under Extraction you will find two types of files .txt and .def corresponding again to SWAT output files
output.rch, output.hru, and output.sub. If you have observations corresponding to variables in these
files, then you need to extract the corresponding simulated values from these files only.

- 3 Var_file_rch.txt

....... B
....... )
- G SUFI2_extract_rch.def
....... | ﬁg
....... )

.| # Ahinckivn Eunckinn
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txt files simply contain the names of the files that extracted values should be written to, and .def files
define which variables need to be extracted from which subbasins. These files are relatively self-
explanatory. Here again only edit the needed files.

Project Explorer n J & Var_file_rch.txt x

= @3 HRU 88 Sub - | - file_rch.txt
B----test_l -.Tml his file contains the names of f
&~ / Calibration Inputs
_______ 3 Par_inf.txt FLOW OUT 1.txt
....... |- SUFI2_swEdit.def FLOW OUT 3.txt
....... |- File.Cio FLOW OUT 7.txt

- || Absolute_SWAT_Values.txt LIOE_ U oies
=~ / Observation
------- 3 Observed_rch.ixt

=~/ Extraction

------- G Var_file_rch.bxt

....... I“‘

....... I“'

------- (f SUFI2_extract_rch.def
....... I“‘

In the example provided, we have 4 measured variables, 3 discharges from subbasins 1,3,7, and 1 nitrate
from subbasin 7. The extract files of SWAT-CUP extract the corresponding simulated data from
output.rch file and write them to the files indicated here for every simulation.

Below is an example of SUFI2_extrcat_rch.def

| B SUFI2_extract_rch.def x|

gy FI2 extract_rch.def
m his file defines how variables should be extracted from the output.rch file.

butput.rch : -swat output file name

2 : -number-of ‘-variables to-get

7 18 : -variable column number (s) -in the swat output-file: (as many as-the above number)
20 : -total number-of reaches- (subbasins) -in the project

3| : number of reaches (subbasins) to get for the first variable

. -3 -7 : -reach- (subbasin) ‘numbers:for the first-variable: (ordered)

1 : ‘number -of - reaches (subbasins) ‘to-get-for the second variable- (if not-needed delete this and-the next line))
7| : reach- (subbasin) numbers-for the-second variable- (ordered)

1990 : -beginning year of simulation not- including the warm up period

2001 :-end year of simulation

2 :-time step: (1=daily, -2=monthly, -3=yearly)

// Remarks
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The file is self-explanatory. We are extracting 2 variables: discharge and nitrate. They are in columns 7
and 18 in the output.rch file. There are a total of 20 subbasins in the project. For discharge, we have
flow measurements from subbasins 1, 3, and 7. For nitrate we have measurement from subbasin
number 7 only. The beginning date “does not” include warm up period.

8. Objective function

Next, Objective Function is defined. In this step two files Observed.txt and Var_file_name.txt should be
edited. The Observed.txt file contains all the information in observed_rch.txt, observed_hru.txt,
observed_sub.txt files, plus some extra information for the calculation of the objective function.

E | _2 ‘Objective Function
.~ || Observed.txt
|- Var_file_name.bd

-Var_file_name.txt contains the names of all the variables that should be included in the in the
objective function. These names are similar to the names in the var_file_*.txt in the Extraction section.

| /] Observed.txt | [ Var_file_name.txt x

~
-~

Frow ouT 1.txt
FLOW_OUT 3.txt

FLOW OUT 7.txt
NO3 OUT 7.txt

- file_name.txt

his file contains the names of all the variables that should

T N |

-

-Observed.txt file also is quite self-explanatory.

J (] Observed.txt x| ] Var_file_name.txt ‘

fa* served. txt
~ = [This file contains all the information in observed_rch.txt, observed_hru.txt, observed_sub.txt files, plus some extra information for the calculation of objective function.

e

h : number of observed variables

S : -Objective function type, - l=mult, 2=sum, 3=r2, 4=chi2, 5=NS, 6=br2, 7=ssqr, 83=PBIAS, 9=KGE, 10=RSR

0.5 : 'min-value of -objective  function threshold for the behavioral solutions

FLOW OUT 1 : this-is the name of the variable and the subbasin number to-be included in-the objective fu

il : ‘weight of -the variable -in the objective  function

— : Dynamic- flow separation. ‘Not -considered-if--1.-If 1, -then values should be-added in-the  forth colw

1 : -constant - flow separation, -threshold value. (not considered -if -1)

il :-if separation -of -signal is- considered, -this is -weight of the smaller values in-the objective  funct

il :-if separation -of -signal is considered, -this is weight of the larger -values in-the objective functi

10 : percentage of measurement error

141 : ‘number -of -data points for this variable-as- it -follows below. First column-is-a sequential number-f
:-of - the simulation, -second column-is variable name and -date: (format arbitrary), -third column-is-var

il FLOW _OUT_1_ 1990 1.38

2 FLOW _OUT_2_ 1990 1.89

3 FLOW OUT 3 1990 5.2

4 FLOW OUT_4 1990 6.73

5 FLOW _OUT_5 1990 2.71
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In this example we have 4 variables. We have an option to choose from 10 different objective functions.
Read the section on Objective Function below for more explanation of the functions.

The third line is optional to run, but there should be a number here. If you express a threshold value
here, then all simulations with objective function value better than the threshold are collected and the
95PPU calculated based on those simulations. Here, the SUFI2 becomes similar to GLUE. The p-factor
and the r-factor for a given threshold may be different from the solution where threshold is not
considered. Please note that the threshold value must correspond to the type of objective function
being used.

Baseflow separation

Two options are provided to consider baseflow separation: static and dynamic. In the static case, a
constant threshold value for baseflow is used. This values, divides the discharge signal into two parts.
Values smaller than the threshold and values larger than the threshold are treated as two variables and
carry two different weights. This is to ensure that, for example, base flow has the same values as the
peak flows. Without this division, if you choose option 2 for objective function, i.e., mean square error
(see objective function section below), then the small flows will not have much effect on the
optimization. Hence, peak flow will dominate the processes. With the static threshold option, small
flows can be given a larger weight in the objective function so that they have almost the same
contribution to the objective function as the peak flows. The base flow separation is most effective
when option 2 is chosen for objective function. Separating the base flow does not become very critical if
R* or bR? is used for objective function.

250 4
200 4

150 4

Discharge

100 4

Threshold=35 —» - 1 \/’K\JN v, \JJ/\\JJ\ u \/’f\w v \/J/\\\JJ\ \__

1 111 12

Time

To not use this option, simply set constant flow separation threshold to a negative value (say -1 for a
variable that is always positive) and the weights for smaller and larger flows to 1.
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In the dynamic case, a flow separation program should be used to calculate the base flow. Both
observed flow and baseflow must then appear in the observed.txt file as two separate columns, column
3 and column 4, respectively, as shown in the observed+.txt example file in .\SUFI2.IN directory.

Percentage of measured error

This value refers to the measurement error. A default value of 10% is specified, but the users can change

this based on their knowledge. This value is reasonable for flow, but should be higher for other variables
such as sediment and nitrate, etc.

9. No_Observations

The No_Observation section is designed for the extraction and visualization of uncertainties for the
variables for which we have no observation, but would like to see how they are simulated such as
various nutrient loads, or soil moisture, ET, etc. The .txt files are inactive.

Fe W No Observation

------- £ Extract_rch_No_Obs.def
------- g Extract_hru_No_Obs.def
------- |gg Extract_sub_No_Obs.def
------- i Var_file_rch_No_Obs.tdt
------- gg Var_file_hru_No_Obs.td
------- |gg Var_file_sub_No_Obs.txt
------- |- 95ppu_No_0Obs.def

The .def files have more or less the same format as the Extraction section.

Extract_rch_No_Obs.def Extract_hru_No_Obs.def Extract_sub_No_Obs.def
SUFI2 :  SWAT-CUP program: - SUFI2, ' GLUE, - ParaSol, ' PSO, -MCMC
output.rch : swat output file name
3 : number-of -variables to-get: (such as: discharge, sediment, ‘ET etc.)
7- -8 1 : variable column number (s) -in the swat output file  (as many as the number above)
R-FLOW - -R-EVAP- -R-SED_OUT :Names - of ‘variables
20 : - total number of- subbasins in the project
2 : ‘number - of subbasins-to-get for the first variable
3-5 : subbasin numbers for the first variable. Write "All" if equal to the total number of HRUs
20 : number  of subbasins to get for the second variable  (if not needed delete this and the next line)
ALL : -subbasin numbers for the second variable. Write "All" if equal- to the total number:of HRUs
3 : -number - of - subbasins-to get for the third variable (if not needed-delete-this-and-the next line)
-2 3 : -subbasin numbers  for-the third variable. Write "Al1ll" -if-equal to the total number of HRUs
1990 : ‘beginning year-of -simulation not including warm up period
2001 : end year of simulation
% : time step- (l=daily, 2=monthly, - 3=yearly)

This files is also self-explanatory. The number of variables to get, column numbers (sequential), and
representative variable names are specified (R- is used here to indicate these are from output.rch SWAT
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file) in rows 3-5. These names are used to build files where simulated values are collected for all
simulations. Then total number of subbasins in the project is specified.

For each variable, we identify the number of subbasins to get, and the subbasin number(s). If we want
to get all subbasin values, for example for plotting maps, then simply indicate ALL. This followed by
beginning and end year of simulation. Again, beginning year of simulation should not include warm up
period.

-95ppu_No_Obs.def

Finally, for NO_Observation option we need to edit the 95ppu_No_Obs.def file. This is a file used for the
calculation of the 95ppu for the extracted variables with no observation.

95ppu_No_Obs.def

SUFIZ2
25

:name -of -optimization program: - SUFI2Z, -Para Sol, -GLUE, -PSO,

: ‘number - of -variables to-calculate 95PPU- for without any ok
:variable names, - which should -be -the same -as -simulation - file names:

R-FLOW_ 3.txt

R-FLOW 5.txt

R-EVAP 1.txt

R-EVAP 2.txt

R-EVAP_19.txt
R-EVAP_20.txt
R-SED_1.txt
R-SED 2.txt
R-SED_3.txt

144 : ‘number - of -data points-or-simulation time  steps

This file again is quite self-explanatory. The number of variables for which 95PPU is to be calculated is
given in the second row. Variables’ names are then provided. These names should be exactly the same
as the ones given in the .def file(s). Finally, the number of simulation time steps are given. For 12 years
of monthly simulation this would be 144.
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10. Executables

The section on Executable Files plays the role of engine in SWAT-CUP. The four batch files indicate what
should or should not be run.

=8 kﬁ Executable Files

46k SUFI2_pre.bat
46k SUFI2_run.bat
$6k SUFI2_post.bat
Sk Sufi2_Extract.bat

-SUFI2_pre.bat

This batch file runs the pre-processing procedures. It include running the Latin hypercube sampling
program. This batch file usually does not need to be edited.

F12 pre.bat

This batch file runs the preprocessing procedures, which now include running t

File Name / Command |Exec...
SUFI2_LH_sample.exe (Required)

Remarks:

This program calculates Latin hypercube samples

Text View~, Form View|

Note that many files at the end have Form View and Text View. In the Text View you have the text file,
which appears in you SWAZ-CUP project directory. You can easily edit this text file as needed with the
same format as shown.

k: required
SUFI2 LH sample.exe

Remarks:

This program- calculates Latin hypercube samples
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-SUFI2_run.bat

This program executes SUFI2_execute.exe program, which runs the SWAT_Edit.exe, extraction batch
files, as well as SWAT.exe.

| %2 SUFI2_run.bat x|

12 run.bat

This program executes SUFI2_execute.exe program, 1

File Name / Command |Exe|:...
sufi2_execute.exe (Required)

-SUFI2_post.bat

- runs the post-processing batch file, which runs the programs for objective function calculation, new
parameter calculation, 95ppu calculation, 95ppu for behavioral simulations, and 95ppu for the variables
with no observations (optional). In the Text Form one can uncheck a program if it is not needed to run.

% SUFI2_post.bat x|

F12 post.bat

Runs the post-processing batch file, which runs the programs for objective function ¢

File Name / Command |Exec...

SUFI2_goal_fn.exe (Required)
SUFI2_new_pars.exe (Required)
SUFI2_95ppu.exe (Required)
SUFI2_95ppu_beh.exe (Required)
95ppu_NO_Obs.exe | | (Optional)

Remarks:
For post processing, the program calculates the goal function, new parameters, 95PPU, and the b

The 95ppu_NQO_0Obs.exe is optional. Only run it when you extrcat variables with no observation
and want to see their 95% prediction uncertainties
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-SUFI2_Extract.bat

- This batch file contains the names of all the extract programs with or without observations. Currently 8
programs are supported. This file must be edited and the programs that are not desired to run should be
“remarked” or “unchecked” as shown below:

{& Sufi2_Extract.bat x |

72_Extract. bat
This batch file extracts variables from SWAT output files. Check all the required programs.

File Name / Command |Exec...
SUFI2_extract_rch.exe (Optional)
SUFI2_extract_hru.exe [ |(Optional)
SUFI2_extract_sub.exe O |(Optional)
SUFI2_extract_res.exe O |(Optional)
SUFI2_extract_mgt_CropYield.exe £ |(Optional)

extract_rch_No_Obs.exe [ |(Optional)
extract_hru_No_0Obs.exe O |(Optional)
extract_sub_No_0Obs.exe £ |(Optional)

11. Before Calibration
At this point the input files are complete and the project is ready to be calibrated. But before starting an

iteration, you need to make sure that the model you have built in feasible initially. So, you should make
a first run with the initial model structure and initial model parameters.

To check the initial model with SWAT-CUP do the following:

1-In Par_inf, put the number of simulations and the number of parameters to 1
2-In SUFI2_swEdit put the beginning and the ending simulation also to 1

3-Set up a dummy parameter such as

r__SFTMP.bsn 0 0 (this does not change anything)

4-Then execute in order: Pre, Run, and Post processing.

Now look at the 95PPU result of your default or initial model run. If simulations and observations are too
different, then you need to take a closer look at your swat model, including rainfall, etc. Else, look at the

calibration protocol in (http://www.sciencedirect.com/science/article/pii/S0022169415001985) to
adjust the parameter in a way as to achieve the best simulation result at each observed outlet.

For this initial simulation, you should also look at the output.std file to make sure the overall watershed
flow components are correct or not.
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12. Calibration

Next, after editing all the input files, perform “Save All” and “Close All” tasks. The run the programs in
the Calibration window in the order that they appear. In this section three steps are performed:

@ecw -

@ Home H Parallel Processing H Utility Programs || Layiod‘t':

] X Cut Undo
Paste B Copy Redo
% Delete Select All

% Find & Next Bookmark H Save
2, Replace 4 Previous Bookmark = M4 Save All

test_1.Sufi2 - SWAT CUP

Clear Bookmarks

Edit Calibration - Validation

Kl @

Calibrate... Save Iteration Validate...

Print  Advanced Close Help About License and
Preview  Writing All Activation ~

Print Tools = Window Help

I Project Explorer

| || Observed.txt | | 1Var_file_name.txt x

a|| [jparinfitet | ) SUFI2 swidit.def

jrams Layout

<mark H Save # @ @ P @
Bookmark . 4 Save Al Calibrate... = Save Iteration Validate...  Print  Advanced Clo
arks Preview  Writing Al
Calibration - Validation Print Tools  Wind
Execute Calibration E
wﬁ SUFI2_pre.bat
wﬁ SUFI2_run.bat
,@5 SUFI2_post.bat
w Execute all
Execute all items
——————————————————————————
i) Sufi2_pre.bat - This command runs the Sufi2_pre.bat file. This file must be run before the start
of every new iteration.
ii) SUFI2_run.bat - This command executes the run batch file.
iiii) SUFI2_post.bat - After all simulations are finished, this command executes the post processing

batch file described above.
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13. Calibration Outputs

Project Explorer o

=7 ®3HRU 88 Sub

B [ test_1

- __/ Calibration Inputs

- iaExecutable Files

BB Catbraton Outpus

....... ﬂ 95ppu plot

------- ﬂ 95ppu-No-Observed plot
....... ﬂ Dotty Plots

....... ﬂ Best_Par.txt

....... ﬂ Best_Sim.txt

....... ﬂ New_pars.ixt
....... ﬂ Summary_Stat.txt

-95ppu plot

This command shows the 95ppu of all variables. Also shown are observations and best simulation of the
current iteration. Please Note that the best simulation is only shown for historic reason. The solution to
the calibration at this stage is the 95PPU graph and the parameter ranges that were used to generate it.
Note the features with arrow where you can change the variables as well as zooming the hydrograph.

« 95ppu plot x ‘ & 95ppu-No-Observed plot |

| wu plot
he 95ppu of all variables. Also shown are observations and best simulation of the current iteration.

| p Record 2 of 4 , w | |search -

I

FLOW_OUT_3

1400 4
1300 4
1200 4
1100 4
1000 4
9S00 4
800
700 4
600 4
500
400 4
300 -
200
100

Data Range

A o5PPU
/N Observed

/N Best estimation
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Also, please note the options given by “Chart Layout” and “Print Preview”

me o - Chart Tools sufi2.Sufi2 - SWAT-CUP

@ Home || Parallel Processing “ Utility Programs H Layout | Chart Layout

D % Cut Undo = % Find & Next Bookmark H Save ﬁ @ @ 3 \:B @ 0 6 %

& ) -
Paste & Copy Redo & Replace = @ Previous Bookmark Fy Save All Calibrate... ' Save Iteration = Validate... = Print = Advanced Close  Help About License and
*® Delete  Select All Clear Bookmarks Preview = Writing All Activation ~
Edit Calibration - Validation Print Tools : Window Help

-95ppu-No_Observed plot

This command shows the 95ppu of all variables with no observations. Here you only see the uncertainty
in simulation of Soil Moisture, a variable for which we have no observation.

® 95ppu-No-Observed plot =

wu-No-Observed plot
._ he 95ppu of all variables with no observations.
" ‘ Record 2 of 10 0 ... Search
H-SW_1.txt
A 9500

130 4

120

110
100

a0

&0

70

60

50

a0

* | f

L f ' /\ [ .‘I II|
10 | |

0 l b | :
10 20 1) 40 S0 ] 70 0 o0 100 110 120 130 140
Data Range

14+ 1444 »

-Dotty Plots

This command shows the dotty plots of all parameters. These are plots of parameter values or relative
changes versus objective function. The main purpose of these graphs are to show the distribution of the
sampling points as well as to give an idea of parameter sensitivity. In the following figure you see a nice
trend for CN2 as it increases. Objective function is Nash-Sutcliffe (NS). Clearly CN2 is a sensitive
parameter and its best fitting values are less than -0.1 in relative change (r__). But ALPHA_BF does not
appear to be sensitive as the value of objective function doesn’t really change. GW_DELAY also is not
very sensitive, but its value should probably not be above 300, GWQMN also not very sensitive, but it
should probably be somewhere above 0.6. More about sensitivity later.
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1:R CN2Z.mgt

-0.5 +
4 ]
-1.5 +
2]
=23 ~
3]
35 ]

-4.5

015 01 005 0 005
3:V__GW _DELAY.gw

0.1 015

‘45 T T T T T T
50 100 150 200 250 300

-Best_Par.txt

350 40

2:V__ALPHA BF.gw

0.2 0.4 0.6 0.8

4:V_ GWQMN.gw

0.6 0.9 1.2 15 1.8

This file shows the “best parameter” values as well as their ranges. These are the parameters, which
gave the best objective function value in the current iteration. Again, | like to emphasize that the best
parameter really does not mean very much as the next objective function value may not be statistically
not too different from the best one. The parameter ranges are the solution for this iteration.

Goal_type= Nash_sutcliff

Parameter_Name

Best_sim_no= 7

Fitted_value

1:R_CN2.mgt -0.175000
2:V__ALPHA_BF.gw 0.062500
3:V_GW_DELAY.gw 161.250000
4:V_GWQMN.gw 0.625000

Min_value
-0.200000

0.000000
30.000000

0.000000

Best_goal = -4.323317e-002

Max_value
0.200000
1.000000
450.000000
2.000000
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-Best_Sim.txt

This file shows the best simulated values for all the variables used in the objective function. Both
observed and simulated values are given so that they could easily be plotted with other softwares as

desired.

FLow out 1

observed simulated
1.3800 0.1293
1.8900 0.9779
5.2000 0.1027
FLOW_OUT 3
observed simulated
46.2700 14.2100
59.3600 51.4300
143.5500 70.7800
NO3_OUT 7
observed simulated
17000.0000 4596.0000
510000.0000 28490.0000
56000.0000 397.5000
-Goal.txt

This file shows the value of all parameter sets for the simulations performed as well as the value of the

goal function in the last column. This file is used late to calculate the so-called “global sensitivity”.

no_pars= 4
no_Sims= 8§
type_of_goal_fn= Nash_sutcliff

1 0.0250 0.8125
2 0.0750 0.5625
3 0.1750 0.3125
4 0.1250 0.6875
5 -0.0750 0.4375
6 -0.1250 0.9375
7 -0.1750 0.0625
8 -0.0250 0.1875

-New_Pars.txt

Sim_No. 1:R__CN2.mgt 2:V__ALPHA_BF.gw

3:V_GW_DELAY.gw
108.7500
213.7500
423.7500
371.2500
318.7500

56.2500

161.2500
266.2500

RFORROOROL

:V__GWQMN. gw
.8750
.3750
.3750
.1250
.1250
.6250
.6250
.8750

goal_value
0.148754
-0.
-4.
-0.
-0.
=1
-0.
-0.

291169
092258
741793
157484
048107
043233
153588

This file shows the suggested values of the new parameters to be used in the next iteration. These
values can be copied and pasted in the Par_inf.txt file for the next iteration, or alternatively, the
“Import New Parameters” could be used to copy new parameters into par_inf.txt file. The new
parameters should be checked for possible unreasonable values (e.g., negative hydraulic conductivity,
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etc.). These suggested parameter ranges should be manually corrected and if desired directed to a
certain range by the user in case of available information or knowledge of the system.

par no par name new_min new max
r CNZ2.mgt —-0.486369 0.136369
v__ALPHA BF.gw —-0.494362 0.619362
v___GW _DELAY.gw -111.978348 434 .478333
v GWQMN.gw —-0.249130 1.499130
H (=7 Farameterization sufi2.Sufi2 - SWAT-CUP
QJ| Home ” Parallel Processing ” Utility Programs ” Layout H Parameterization .
1 % Cut Undo | % Find <& Next- Bookmark M Save g e
Paste & Copy Redo 4 Previous Bookmark | 1 Save All fellmmey Tetammy  Tmnen Ve
*® Delete  Select All Clear Bookmarks parameter parameter = Parameters
Edit New Parameter
Project Explorer ] | & New_pars.txt | |- Par_inf.ixt x |
2 GBRch| 83 HRU 88 Sub o = it
=] suﬁZ “ ~ = |contains input parameters to be optimized. After a complete iteration, review the suggested nev
B~ ./ Calibration Inputs c oo
L] Par_inf.bxt _ Number Of Parame Number Of Simulat
-] SUFI2_swEdit.def | 4:1] [AII]H 8 :|
-- || File.Cio Parameters:
|.-] Absolute_ SWAT_Values_txt
-/ Observation 2 Basic Information < Value P Filter Conditions (optiona
/ Extraction
- ./ Objective Function # |Par Name ‘File Name |Fi|e E... | Method |Min |Max Hydm...|50i| Te...‘Lan... |5ubba
/" No Observation 5 1 CN2 .mgt r Relative -0.2 0.2 (Al
F- [ Executable Files | | 2 ALPHA_BF -gw ‘-: Replace 0 1 (AN
=] Calibration Outputs 2z 3 GW_DELAY .gw v Replace 30 450 (Al
- g| 95ppu plot | 4 GWQMN -gw v Replace 0 2 (A
=1 05nnn-Ma-Nhcanrad nlnt

-Summary_Stat

This file has the statistics of comparing observed data with the simulation band through p-factor and r-
factor and the best simulation of the current iteration by using R? NS, bR?, MSE, SSQR, PBIAS, KGE, RSR,
and VOL_FR. The mean and standard deviation of the observed and simulated variables are also given
at the end. For definition of these functions see the section on objective functions. Also shown is the
goal function type, best simulation number of the current iteration, and the best value of the objective
function for the current run on the top.

If behavioral solutions exist, then the p-factor and r-factor for these solutions are also calculated. As
shown in the following Table the effect of using behavioral solutions is to obtain smaller p-factor and r-
factor, or a smaller prediction uncertainty.
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Goal_type= Nash_sutcliff  No_sims= 8 Best_simno= 1 Best_goal = -5.415826e-002

Variable p-factor r-factor R2 NS bR2 MSE S50R PBIAS KGE RSR MNS VOL_FR --- Mean_sim(Mean_obs) StdDev_sim({5tdDev_obs)
FLOW OUT_1 0.50 0.59 0.10 -0.18 0.0030 3.7e+001 3.3e+001 B87.5 -0.43 1.09 0.16 7.97 0.39(3.08) .57(5.62
FLOW_QUT_3 0.79 1.54 0.33 0.10 0.0704 1.3e+004 B8.4e+003 57.5 0.05 0.95 0.27 2.35 37.78(88.87) 43.51(119.08)
FLOW_QUT_7 0.62 2.03 0.03 -0.17 0.0024 7.4e+003 1.8e+003 31.6 -0.00 1.08 0.14 1.46 40, 40(59.03) 43.07(79.74)
NO3_OUT_7 0.58 1.37 0.96 0.02 0.0793 1.9e+010 1.9e+010 92.4 -0.30 0.99 0.34 13.15 4171.07(54860,80) 11689,00(138810.14)

---- Results for behavioral parameters ---
Behavioral threshold= -2.500000
Number of behavioral simulations = 7

variable p-factor r-factor R2 NS br2 MSE S50R PBIAS KGE RSR  MNS5 VOL_FR --- Mean_sim(Mean_obs) stdDev_sim(5tdDev_obs)
FLOW QUT_1 0.23 0.23 0.10 -0.18 0.0030 3.7e+001 3.3e+001 87.5 -0.43 1.09 0.00 7.57 0.39(3.08) 0.57(5.62)
FLOW_OUT_3 0.49 0.74 0.33 0.10 0.0704 1.3e+004 8.4e+003 57.5 0.05 0.95 0.00 2.35 37.78(88.87) 43.51(119.08)
FLOW_QUT_7 0.55 1.02 0.03 -0.17 0.0024 7.4e+003 1.8e+003 31.6 -0.00 1.08 0.00 1.46 40.40(59.03) 43.07(79.74
NO3_OQUT_7 0.50 0.28 0.96 0.02 0.0793 1.9e+010 1.9e+010 92.4 -0.30 0.99 0.00 13.15 4171.07(54860.80) 11689.00(138810.14)

14. Sensitivity analysis

This module of the program performs sensitivity analysis. Two types of sensitivity analysis are allowed.
Global Sensitivity and One-at-a-time sensitivity analysis.

- |

GRRch @8 HRU| 88 Sub

= | sufi2
H- _' / Calibration Inputs —
[~ iﬁ Executable Files

(- [iii] Calibration Outputs
=@ - Sensitivity analysis

- | Global Sensitivity

=

-

Global sensitivity analysis can be performed after an iteration. One-at-a-time sensitivity is performed for
one parameter at a time only. The procedure is explained in the next section.

15. Maps

The Maps module enables visualization of the outlets. The Bing map is used to project the location of
outlets, rivers, climate stations, and subbasins on the actual map of the world.

Project Explorer 2 [

r=; ®3 HRU 88 Sub
= sufi2

' _' ./ Calibration Inputs =
W Executable Files
Calibration Outputs
@ Sensitivity analysis

o QI

o ° Outlet Map
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When you invoke the Outlet Map, the Bing map is activated and the program asks for the ArcSWAT
project Shapes folder.

Look in: - - | Search -

Please browse a "Shapes” folder from the corresponding SWAT project folder

Browse...

Upon locating the Shape file folder in the ArcSWAT project, ...\Watershed\Shapes, several options are
provided for visualization of the outlet location:

" TiRch 4 HRU B4 Sub

ety - (AN Pk, = Seth

£, Outlet Map
(£
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The subbasin boundaries, and the location of rain gauges. This module is extremely useful in analyzing
weather the outlets are in their correct location or not, whether the rivers are properly digitized by
SWAT or not, if the outlet is under the influence of snow and glacier, intensive agriculture, etc.

Some examples from the European project show:
(from http://www.sciencedirect.com/science/article/pii/S0022169415001985)

a) Wrong positioning of an outlet on Viar river instead of on the main Rio Guadalquivir in Spain.
The red-green symbol indicates location of the outlet.
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b) The position of an outlet downstream of a dam on Inn River near Munich, Germany. SWAT
cannot calibrate the flow in this outlet unless the reservoir is modeled.

- —
K‘«
—

e T

c) a complex river geometry on Pechora River near Golubovo in Russia. SWAT cannot be
expected to simulate the flow in this outlet with high accuracy.
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d) The flow in the outlet below is governed by glacier melt near Martigny in Switzerland. These
features could explain some of the discrepancies between simulation and observed results in
SWAT calibration.
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16. Utility programs (C:\SWAT\SWAT-CUP5.1.6.2\ExternalData\utilityprograms)

Project Explorer o L
= #3 HRU B8 Sub
= [E test_1 l

E -|_,ZI/CaIibrati0n Inputs
-ﬁExecutable Files
-[iii] Calibration Outputs
@ Sensitivity analysis
- @ Maps

=M, Utility Programs
[+ [ Upstream subbasins

This module currently has two program in it: Make_ELEV_BAND, not shown in the interface, and
Upstreamsubbasins, which is shown in the interface.

Make_ELEV_BAND, this program can calculate the elevation band for a SWAT project and use SWAT-
CUP to put the information in SWAT *.sub files. There is an explanatory file called elev_band.doc, which
explains how to do this.
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Upstreamsubbasins, this program can determine the upstream subbasins. This is a useful information
for parameterization. A READ_ME.txt file explains how to use this program. The file
upstream_sorted.out, which is not shown in the interface shows, in a sorted manner, all the above
subbasins of any observed subbasin. The upstream.out contains a visualization option that shows which
outlets are connected to each other.

LI SUFI2_swEdit.def | o Observed rchbt | @OutietMap | &l up out x| | upstream.def | | upstream_from_to.but
=" Rch| 8SHRU 88 5Sub P

= [Etest_1 | . ] Jutput item.
[ Calibration Inputs d

Executable Files

Project Explorer

Calibration Outputs
[~ @ Sensitivity analysis
- (@ Maps
- < Utility Programs
= [y Upstream subbasins (=
upstream.def
upstream_from_to.tet
& upstream.out
3 teration History

11

()=

outlet no= il
outlet no= 3
o 8-[7-4-8-9-0-10-11-02-013-14-18-15-19-20-1g-17

outlet no= 7
4-8-9-1-10-11-12-13-14-18-15-19-20-14-17

outlet no= 18
19-20

The above text and visual aid show that subbasin (or outlet) number 1 has no upstream subbasin, while
outlets 3,7,18 (which are here measured outlets) have upstream subbasins. If you right click on the node
connecting outlets 3 and 18 above, then you will find all the non-intersecting subbasins between 3 and
18. That means all the subbasins between 3 and 18. Using this information, one can calibrate for outlet
18 by parameterizing subbasin 19 and 20 first, which contribute to outlet 18. Then keep the ranges fixed
for the parameters of subbasins 18 and 19, and parameterize subbasins in between 18 and 3 (see the
picture below, the arrow shows a list of these parameters in the text form). Using this procedure, outlet
3 can be calibrated.
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outlet no= il
outlet no= 3
S-e-[7-4-8-9-1-00-11-12-03-14- 18 -015-19-20/-16-17

outlet no= 7
4-8-9-1-10-11-12]-13-14-18|-15-19-20-16-17

outlet no= 18
19-20
outlet no= 18,3

S e, 14,891,100, 02,03,14,18,15,16,17

17. Iterations History

All iterations can be saved in the iteration history. This allows studying the progress to convergence.

story

----- [ Teert
..... [ Iterz
----- [ Tter3
----- EII:EM

After a complete iteration, review the suggested new parameters in the new_pars.txt, copy them to
par_inf.txt and edit them as explained before, and make a new iteration. There are no hard rules as to
when a calibration process can be terminated. But the process can stop when satisfactory statistics are
achieved and there are no further improvements in the objective function value.
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Parameterization in SWAT-CUP

The following scheme can be used to parameterize, or regionalize parameters of a watershed. In SWAT,
the HRU is the smallest unit of spatial disaggregation. As a watershed is divided into HRUs based on
elevation, soil, and landuse, a distributed spatial parameter such as hydraulic conductivity, bulk density,
or CN2 can potentially be defined for each HRU. An analyst is, hence, confronted with the difficult task
of collecting or estimating a large number of input parameters, which are usually not available. An
alternative approach for the estimation of distributed parameters is to lump them based on soil type,
landuse type, location, slope, or a combination of these. They can then be calibrated using a single
global modification term that can scale the initial estimates by a multiplicative, or an additive term. This
leads to the following proposed parameter identifiers explained below.

X__<parname>.<ext> <hydrogrp>_ <soltext> <landuse> <subbsn>__<slope>

Where
Xx__ = ldentifier code to indicate the type of change to be applied to the parameter:
V___means the existing parameter value is to be replaced by a given value,
a__means a given value is added to the existing parameter value, and
r__means an existing parameter value is multiplied by (1+ a given value).
Note: that there are always two underscores __ after the identifier
<parname> = SWAT parameter name as it appears in the SWAT I/O manual or in the
Absolute_ SWAT_Values.txt file.
<ext> = SWAT file extension code for the file containing the parameter
(e.g., .sol, .hru, .rte, etc.)
<hydrogrp> = (optional) soil hydrological group (‘A’,’B’,’C’ or ‘D’)
<soltext> = (optional) soil texture as it appears in the header line of SWAT input files
<landuse> = (optional) name of the landuse category as it appears in the header line of SWAT
input files
<subbsn> = (optional) subbasin number(s) as it appears in the header line of SWAT input
files
<slope>= (optional) slope as it appears in the header line of SWAT input files

Any combination of the above factors can be used to describe a parameter identifier. If the parameters
are used globally, the identifiers <hydrogrp>, <soltext>, <landuse>, <subbsn>, and <slope> can be
omitted.

Note: the two underscores after every previous specifications must be used, i.e., to specify only the
subbasin we must write eight underscores after .crp  v__USLE_C.crp 2
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The presented encoding scheme allows the user to make distributed parameters dependent on
important influential factors such as: hydrological group, soil texture, landuse, elevation, and slope. The
parameters can be assigned and calibrated regionally, or be changed globally. This gives the analyst
larger freedom in selecting the complexity of a distributed parameter scheme. By using this flexibility, a
calibration process can be started with a small number of parameters that only modify a given spatial
pattern, with more complexity and regional resolution added in a stepwise learning process. Some
examples of the parameterization scheme is as follows:

Specification of Soil Parameters

Parameter identifiers

Description

r__SOL _K(1).sol

K of Layer 1 of all HRUs

r__SOL_K(1,2,4-6).s0l

K of Layer 1,2,4,5, and 6 of all HRUs

r__SOL_K().sol

K of All layers and all HRUs

r _SOL K(1).sol D

K of layer 1 of HRUs with hydrologic group D

r__SOL_K(1).sol FSL

K of layer 1 of HRUs with soil texture FSL

r__SOL_K(1).sol__ FSL__PAST

K of layer 1 of HRUs with soil texture FSL and
landuse PAST

r__SOL_K(1).sol__FSL__PAST _1-3

K of layer 1 of subbasin 1,2, and 3 with HRUs
containing soil texture FSL and landuse PAST

Specification of Management Parameters

Parameter identifiers

Description

v__HEAT_UNITS{rotation no,operation no}.mgt Management parameters that are

subject to operation/rotation must
have both specified

v__CNOP{[],1}.mgt

This changes an operation's
parameters in all rotations

v__CNOP{2,1,plant_id=33}.mgt

Changes CNOP for rotation 2,
operation 1, and plant 33 only

v__CNOP{[],1,plant_id=33}.mgt

Similar to above, but for all rotations

v__CNOP{[],1,plant_id=33}.000010001.mgt

With this command you can only
modify one file
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r__FRT_KG{9,1}.mgt

In these three examples, rotation 9,
operation 1, and the rest are filters

r__FRT_KG{9,1,PLANT ID=12}.mgt

where , means AND

r__FRT_KG{9,1,PLANT ID=12,HUSC=0.15}.mgt

Specification of Crop Parameters

Parameter identifiers

Description

v__T_OPT{30}.CROP.DAT

Parameter T_OPT for crop number 30 in the
crop.dat file

v__PLTNFR(1){3}.CROP.DAT

Nitrogen uptake parameter #1 for crop
number 3 in crop.dat file

Specification of Pesticide Parameters

Parameter identifiers

Description

v__WSOL{1}.pest.dat

This changes parameter WSOL for pesticide
number 1 in pest.dat file

Specification of Precipitation and Temperature Parameters

Parameter identifiers

Description

v__precipitation(1){1977300}.pcp1.pcp

(1) means column number 1 in the pcp file

{1977300} specifies year and day

v__precipitation(1-3){1977300}.pcpl.pcp

(1-3) means column 1, 2, and3

{1977300} specifies year and day

v__precipitation( ){1977300,1977301}.pcp

() means all columns (all stations)

{1977300,1977301} means 1977 days 300 and
301

v__precipitation( ){1977001-
1977361,1978001-1978365,1979003}.pcp

() means all columns

from day 1 to day 361 of 1977, and from day 1
to day 365 of 1978, and day 3 of 1979

v__MAXTEMP(1){1977001}.tmp1.tmp

(1) means column 1 in the tmp1.tmp file
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{1977001} specifies year and day

v__MAXTEMP(2){1977002-
1977007}.tmpl.tmp

(2) means column 2 in the tmpl.tmp file

from day 2 to day 7 in 1977

v__MINTEMP (){1977002-1977007}.tmpl.tmp

() means all columns in tmp1.tmp file

Specification of slope Parameters

Parameter identifiers

Description

v__SOL_K(1).sol 0-10

K of layer 1 for HRUs with slope 0-10

Please note that brackets ( ) are used to distinguish layers in parameters that have many layers.

Also, please note that precipitation and temperature are also allowed to be used as fitting parameters.

This option must be used with caution because fitting rainfall can make calibration of parameters
irrelevant as rainfall is the single most important driving variable controlling the behavior of flow.
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Objective Function Definition

In the observed.txt file, 10 different objective functions are currently allowed. These include:

1=mult Minimize: g=- * * 1 *

This is a multiplicative form of the square error where Q, S, and N stand for variables (e.g., discharge,
sediment, and nitrate), n is the number of observations, and m and s stand for measured and simulated.
Sometimes the denominator is divided by 1000 to keep g small.

n

2=sum  Minimze:  g=w, > (Qn - QL +wW, > (S, =S, ¥ +w, > (N, =N, + ...
i=1 i

i=l

This is the summation form of the square error where Q, S, and N stand for variables (e.g., discharge,
sediment, and nitrate), m and s stand for measured and simulated, n is the number of data points, and
weights W’s could be calculated as:

; -1
i) w; = 2
: Ai(jj

where sz is the variance of the jth measured variable (see Abbaspour, et al., 2001), or

i) w, =1, W2:Qm5— , W3=QyN

where bars indicate averages (see Abbaspour et al., 1999). Note that choice of weighs can affect the
outcome of an optimization exercise (see Abbaspour, et al., 1997).

S -0, )0u -0
R =

3=R? Maximize:

Coefficient of determination R* where Q is a variable (e.g., discharge), and m and s stand for measured
and simulated, i is the i" measured or simulated data. If there are more than one variable, then the
objective function is defined as:
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9=ZW1R12
J

Where w; is the weight of j variable.

> Q. -Q.)

4=Chi2 Minimize: ="
Gm

where Q is a variable (e.g., discharge), and m and s stand for measured and simulated, respectively, and
O'ri is the variance of measured data. If there are more than one variable, then the objective function is
calculate as:

9=ZW17512
J

Where w; is the weight of j" variable.

5=NS Maximize: NS =1—

Nash-Sutcliffe (1970), where Q is a variable (e.g., discharge), and m and s stand for measured and
simulated, respectively, and the bar stands for average. If there is more than one variable, then the
objective function is defined as:

g:ijNSj
J

Where w; is the weight of j™ variable.

bR® it |o<1

6=bR’ Maximize: p=3
b "R* if  |p[>1

Where Coefficient of determination R? is multiplied by the coefficient of the regression line between

measured and simulated data, b. This function allows accounting for the discrepancy in the magnitude

of two signals (depicted by b) as well as their dynamics (depicted by R?). If more than one variable, the

objective function is expressed as (Krause et al., 2005):
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in case of multiple variables, g is defined as:
g=> wg
i

Where w; is the weight of j™ variable.

7=SSQR Minimize: SSQR = % " Qim — Qi,s]2

where Q is a variable (e.g., discharge), and m and s stand for measured and simulated, respectively. Here
i represents the rank. The SSQR method aims at fitting the frequency distributions of the observed and
the simulated series. After independent ranking of the measured and the simulated values (van
Griensven and Bauwens, 2003):

in case of multiple variables, g is defined as:
g=> W;SSQR,
i

Where w; is the weight of j™ variable.

3(Q,-Q)

8. PBIAS Minimize: PBIAS =100* =L —

n

ZQm,i

i=1

where Q is a variable (e.g., discharge), and m and s stand for measured and simulated, respectively.
Percent bias measures the average tendency of the simulated data to be larger or smaller than the
observations. The optimum value is zero, where low magnitude values indicate better simulations.
Positive values indicate model underestimation and negative values indicate model over estimation
(Gupta et al., 1999).

in case of multiple variables, g is defined as:

g =) w,PBIAS,
j

Where w; is the weight of j™ variable.
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9. KGE Maximize: KGE=1-/(r—1)2+ (a—1)2+ (8 —1)2

[oF . . . . . .
Where a = J—S, and g = 5—5, and r is the linear regression coefficient between simulated and measured
m m

variable, us and u, are means od simulated and measured data, and o and o, are the standard

deviation of simulated and measured data. Kling—Gupta efficiency (Gupta et al., 2009).

in case of multiple variables, g is defined as:
g =) w,KGE,
i

Where w; is the weight of j™ variable.

10. RSR Minimize: RSR = 1=

where Q is a variable (e.g., discharge), and m and s stand for measured and simulated, respectively. RSR
is the standardizes the RMSE using the observation standard deviation. RSR is quite similar to Chi in 4. It
varies from 0 to large positive values. The lower the RSR the better the model fit (Moriasi et al., 2007).

in case of multiple variables, g is defined as:
g=> W,RSR,
i

Where w; is the weight of j™ variable.

2l -Qff
11. MNS Maximize: NS=]-—V+

Z‘Qm’i B @“‘ip

Modified Nasch-Sutcliffe efficiency factor. If p=2, then this is simply NS as in 5 above. If p=1, the
overestimation of a peak is reduced significantly. The modified form is reported to be more sensitive to
significant over- or under-prediction than the square form. Increasing the value of p beyond 2 results in
an increase in the sensitivity to high flows and could be used when only the high flows are of interest,
e.g. for flood prediction (Krause et al., 2005)

NOTE: After an iteration, try changing the type of objective function and run SUFI2-Post.bat alone to
see the effect of different objective functions, without having to run SWAT again. This is quite
informative as it shows how the choice of objective function affects the calibration solution.
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Sensitivity Analysis
1- Global Sensitivity analysis

Parameter sensitivities are determined by calculating the following multiple regression system, which
regresses the Latin hypercube generated parameters against the objective function values (in file
goal.txt):

g=a+ iBibi
io1

A t-test is then used to identify the relative significance of each parameter b,. The sensitivities given
above are estimates of the average changes in the objective function resulting from changes in each
parameter, while all other parameters are changing. This gives relative sensitivities based on linear
approximations and, hence, only provides partial information about the sensitivity of the objective
function to model parameters. In this analysis, the larger, in absolute value, the value of t-stat, and the
smaller the p-value, the more sensitive the parameter. In the example below, CN2, ESCO, followed by
GE_DELAY, CH_N2, and ALPHA_BF are the five most sensitive parameters.

Project Explorer 0 | | Global Sensitivity
= Globral Sensitivity
= DEpr bJ
+ ----- Calibration Inputs y
+ .... L:_’-'T-:.}Executable Flles Parameter Name E-Skat - |P-Value
i Calibration Qutputs w_ GW_DELAY. qu -3.337574155 0.015655773
‘ """ @0 sensitivity analysis v__ ALPHA_BF.gw -2.433339763 0.050930647
| w_ GWOMN, g -2,073586080 0.053472224
b SOL_AWCE).sal -1.770079408 0.127110027
r_ SOL_K(1).sal -1.518643093 0.179654451
t__S0L_ED(1).s0l -0,535486165 0,609622018
w__GW_REVAP.Qw -0,257790123 0.783189355
b |w_ SFTMP.bsn 0.050625906 0,961 266915
v_ CH_KZ.rte 0,5245989407 0.615415467
w__ ALPHA_BNE. e 0.722876613 0.496954415
w_ CH_MZ.rte 2,866863713 0.027607223
v__ESCOuhru 4,212210794 0,005609401
b__CMZ.mgt 5. 733035701 0.001223031
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t-stat and p-value

A multiple regression analysis is used to get the statistics of parameter sensitivity. The t-stat is
the coefficient of a parameter divided by its standard error. It is a measure of the precision with
which the regression coefficient is measured. If a coefficient is “large” compared to its standard
error, then it is probably different from 0 and the parameter is sensitive. What is “large”?

You could compare the t-stat of a parameter with the values in the Student's t-distribution table
to determine the p-value, which is the number that you really need to be looking at. The
Student's t-distribution (you find at the end of most statistics book) describes how the mean of
a sample with a certain number of observations is expected to behave. The p-value for each
term tests the null hypothesis that the coefficient is equal to zero (no effect). A low p-value (<
0.05) indicates that you can reject the null hypothesis. In other words, a predictor that has a
low p-value is likely to be a meaningful addition to your model because changes in the
predictor's value are related to changes in the response variable. Conversely, a larger p-value
suggests that changes in the predictor are not associated with changes in the response. So that
parameter is not very sensitive. A p-value of < 0.05 is the generally accepted point at which to
reject the null hypothesis (i.e., the coefficient of that parameter is different from 0). With a p-
value of 0.05, there is only a 5% chance that results you are seeing would have come up in a
random distribution, so you can say with a 95% probability of being correct that the variable is
having some effect.

2- One-at-a-time sensitivity analysis

One-at-a-time sensitivity shows the sensitivity of a variable to the changes in a parameter if all other
parameters are kept constant at some value. The problem here is that we never know what the value of
those other constant parameters should be. This is an important consideration as the sensitivity of one
parameter depends on the value of other parameters.

Y1

P Variable, Q

y2

X1 X2 P2

The above example illustrates this point. If value of parameter P, is kept constant at y;, then small
changes is parameter P, make significant changes in variable Q, indicating that P, is quite a sensitive
parameter. While if the values of parameter P, is kept constant at y, value, then changes in parameter
P, around x, will give the impression that P, is not a sensitive parameter as the variable does not change
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by much. Therefore, the values of the fixed parameters make a difference to the sensitivity of a

changing parameter.

To perform the one-at-a-time sensitivity analysis:

1- Do as shown in the following Figure. Set the number of parameters in the Par_inf.txt file to 1, and

perform a minimum of 3 simulations.

=

BES e

Parallel Processing

Expl.5ufi2 - SWAT-CUP

Layout

% Cut B 1 =
I ]
Oy Copy ‘ } ¢ Redo | Il Save ‘ @ | kl‘
1
Paste Unda  select all By Save al Calibrate.., | Save Iteration | Yalidate, .. Print Advanced Close Help
¥ Delete Preview Writing all
Edit Calibration - Yalidation Print Tools Window
Project Explorer n J Par_inf.kxt |
Par_infixt
= "!'; el Sufiz prameters information
E| /# Calibration Inputs il : -Number - of - Parameters
I__- Par inf.bxt 3 :-number - of -simulations
|.-_' SUFIZ_swEdit, def
I File.Cio r_ CNZ.mgt -0. 4 0.6
[: .| Absoluke_SWAT Values kxt

2- Then set the values of file SUFI2_swEdit.def as follows:

Project Explorer

=

n

alobal Sensitivity | SUFIZ_swEdit,def

SHUFF2 swidit.def

= Expl

EI ----- /“f alibration Inputs

: |.-.' Par_inf.bxt

|- SUFI2_swEdit. def

starting-simulation- humber
ending: simulation- nurnkher

3- Finally perform the iteration by running under Calibration, SUFI2_pre.bat and then SUFI2_run.bat.

4- Now, the three simulation can be visualized for each variable by executing one-at-a-time command
under Sensitivity analysis as shown below:
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Praject Explarer

=]
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= EExpl

One-at-5-time

-8

B-

/’ Calibration Inputs
« o Par_inf.bxt
+ |+ SUFIZ_swEdit, def

- |¢:.| File Cio

« |- Absolute_SWAT Values,txt

o] ] o]

-/ observation
-/ Extraction

-/ Objactive Function

/o Observation

WExecutable Files
Callbration Qutputs

eSans\tiwty analysis

ﬂGlnha\ Sensitivity
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°Maps

@Itaratlnn History:
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|
_j One-at-a-time
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Help. .
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1
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| |' I I~| 1 = N } |= B -0.466667
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o
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[y
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The dashed line is the observation and the discharge signal for FLOW_OUT _1 is plotted for three values
of CN2 within the specified range. Clearly, CN2 is sensitive and needs to have larger values.

NOTE: The users must be aware that the parameters in the SWAT files in the main SWAT-CUP project
directory are always changing. Once you perform a sensitivity iteration, then the parameter values in
those files are the values of the last run (last parameter set) of the last iteration. To perform the one-at-
a-time sensitivity analysis, one should set the values of the parameters that are kept constant to some
reasonable values. These reasonable values could, for example, be the best simulation (simulation with
the best objective function value) of the last iteration, or the initial model parameters that reside in the

Backup directory.
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Parallel Processing

Parallel processing is a licensed product. Its function is to speed up the calibration process by
parallelizing the runs in SUFI2. The speed of the parallel processing depends on the characteristics of the
computer. New laptops now have at least 4 CPUs. The parallel processing module can utilize all 4 CPUs
so that a 1000-run iteration can be divided into 4 simultaneous runs of 250 each per CPU. The speedup
will not be 4 times because of program and Windows overheads; but the run with parallel processing
will be substantially faster than a single 1000-run submission.

Now a days it is possible to build quite inexpensively a computer with 48 to 64 CPUs and more than 96
GB of RAM. Most SWAT models of any detail could be run on such machines without the need for cloud
or grid computing (see Rouholahnejad, et al., 2012 for more detail).

Currently, 20 simulations are allowed to be made without the need for a license. To obtain a license
follow the direction under license and activation and send the hardware ID, for the time being, to
(neprach_sale@yahoo.com). After obtaining a license file by email, follow the activation process.

To run parallel processing, simply click the Parallel Processing button on the command bar. A new set of
command icons appear. Press “parallel Processing” to see how many jobs can be submitted to your
computer. Under “Process count” you can choose how many parallel jobs you want to submit If the size
of the project is large and there is not enough memory, then smaller number of parallel processes than
the number of CPUs may be possible. The Calibration icon works as before.

H @ - [ sufi2.5ufi2 - SWAT-CUP

E Home | Parallel Processing H Utility Programs “ Layout || Parameterization |
@ eq, Process count: 6 @ ﬁ
Calibrate...  Parallel 1 8 Validate... Save Tteration

Processing

Calibrat... Parallel Processing Validat... Iteration

| Par_inf.bxt x

oL infoat

Project Explorer L

=3 ®3 HRU 88 Sub
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Validation in SUFI2

For validation, you should use the calibrated parameter ranges “without any further changes” and run

an iteration (with the same number of simulations as you used for calibration).

To perform validation in SUFI2, edit the files observed rch.txt, observed_hru.txt, obsrved_sub.txt, and
observed.txt as necessary for the validation period. Also, the extraction files and the file.cio to reflect
the validation period. Then simply use the calibrated parameter ranges to make one complete iteration
(using the calibration button). The 95PPU and the Summary_stat file should reflect the validation results.

The validation key brings up the following menu, which explains the validation steps.

I In SUFI2 validation is inactive.
To validate SUFI2, once calibration is finished, the parameter ranges are used without further

change to simulate the validation period. Hence, the users should update the files:

I - observed.txt,

- SUFI2_extract_rch.def

- file.cio

to reflect validation data, and

- make sure that pcp.pcp, and tmp.tmp contains data for validation period.

- use the calibrated parameter set and perform an iteration with the same number of simulations as the calibration runs

=

64



The sequence of program execution

The sequence of program execution and input/outputs are shown in below. In the following, each input
and output file is described in detail.

INPUT FILES OUTPUT FILES

-ECHO\\echo LH_sample.txt
—»| -SUFI2.IN\\par_val.txt

-SUFI2.IN\\str.txt
SUFI2_make_input.exe

- SUFI2.IN\\trk. txt

- SUFI2.IN\\par_inf.txt »( SUFI2_LH_sample.exe

- SUFI2.IN\\trk.txt
- SUFI2.IN\\par_inf.txt
—» - SUFI2.IN\\par_val.txt

) —Echo\ef:ho_make _par.txt
-model.in

- model.in
. -New SWAT parameter files
- Absolute SWAT Values.txt SWAT_Edit.exe -Swat EditLog.txt
- BACKUP file
/ SUFI2_Run.bat

-SWAT output files

o

- SUFI2_Extract *.def

- output.* - -Echo\echo_extract *.txt
| | - SUF2.INWar file *.txt SUFI2 Extract *.exe  )———- (SNl it (R S

- SUFI2.IN\trk.txt var file *.txt

- SUFI2.IN\observed *.txt

-G e Clna! SUFI2.0UT files listed in _
- output. SUFI2_Extract_ * No_obs.exe )= var file * No obs.txt NO_Observation
- SUFI2.IN\var_file * No_obs.txt - -0 =

- SUFI2.IN\trk.txt
-Echo\echo_goal fn.txt
_ -SUFI2.0UT\\goal.txt
- SUFI2.IN\par_inf.txt -SUFI2.0UT\best_sim.txt
- SUE g.igtobsewfd-txt > SUFI2_goal f.exe -SUFI2.0UT\\best_par.txt
— - SUFI2.IN\par_val.txt SUFI2.0UT\\beh_pars.txt
S SUFIZ.IN\\varfﬁlefname.txt -SUFI2.0UT\\no beh sims.txt
-SUFI2.0UT\best_sim_nr.txt
- SUFI2.IN\par_inf.txt L
- Files liste in var_file name.txt -Echo\echo_95ppu.txt
- SUFI2.IN\observed. txt sum_%@—» -SUFI2.0UT\95ppu.txt
- SUFI2.IN\\best_sim.txt -SUFI2.0UT\\95ppu_g.txt SUFI2 Post.bat
-SUFI2.0UT\\summary_stat.txt -
- SUFI2.IN\par_inf.txt \ 4
-SUFI2.0UT\\no_beh_sims.txt -Echolecho_95ppu_beh. txt
- Files liste in var_file_name.txt —(  SUFI2_95ppu_beh.exe -SUFI2.0UT\\summary_stat.txt
- SUFI2.IN\observed.txt

- SUFI2.IN\\best_sim.txt

\ 4

SUFI2.IN\observed.txt Echo\new_pars_all.txt
SUFI2.0UT\goal.txt @» SUFI2.0UT\new_pars.txt
SUFI2.0UT\\best_par.txt
SUFI2.0UT\95ppu_No_Obs.txt
| -95ppu_No Obs.def —> SUFI2.0UT\95ppu_g No_Obs.txt
- SUFI2.IN\par_inf.txt
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How to see the results of my initial model?

Before starting iterations in SWAT-CUP, you should check simulation of your initial model set up. It is
assumed that some thought and investigation has gone into data collection and the best information is
used to build the SWAT model. To check the initial (default) simulation of your model in SWAT-CUP do
the following:

1-In Par_inf, put the number of simulations and the number of parameters to 1 and set up a dummy
parameter change such as

r__SFTMP.bsn 0 0 (this does not change anything)

2-In SUFI2_swEdit put the beginning and the ending simulation also to 1
3-Then execute: Pre, Run, and Post processing.

Now look at the 95PPU result of your default or initial model run. If simulations and observations are too
different, then you need to take a closer look at your swat model, including rainfall, etc.

If they are not too different, then for each outlet adjust relevant parameters in the relevant subbasins
(referred to as parameterization), and do a few iterations based on that.

For a protocol see the open access paper:

http://www.sciencedirect.com/science/article/pii/S0022169415001985

How to set the parameters in SWAT text files to the best parameter values of
the last iteration?

If you want the SWAT TxtInOut files reflect the best parameters you obtained in an iteration do the
following:

1- Note the number of the best simulation in the Summary_Stat.txt file

2- In the SUFI2_sweEdit.txt set the starting and ending simulation values both to the number of the best
simulation in step 1.

3- Under Calibration, run SUFI2_run.bat. Do not run SUFI2-Pre.bat.

This command will replace the parameter values and set them to the best values of the last iteration.
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How to do Latin Hypercube Sampling

The batch file SUFI2_pre.bat runs the SUFI2_LH_sample.exe program, which generates Latin hypercube
samples. These samples are stored in par_val.txt file.

This program uses Latin hypercube sampling to sample from the parameter intervals given in par_inf.txt
file. The sampled parameters are given in par_val.txt file, while the structure of the sampled data is
written to str.txt just for information. If the number of simulations is 3, then the following happens:

1) Parameters (say 2) are divided into the indicated number of simulations (say 3)

3) A sample is taken at the middle of every segment

.rn .»\\
131

Every vertical combination is then a parameter set.
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How to Calibrate more than one Variable

If you want to calibrate using, for example discharge, nitrate, and phosphate, you should first calibrate
for discharge. This is because flow is the main controlling variable. After calibrating for flow, keep flow
parameter ranges as you obtained from flow calibration and add sediment parameters. There are two
types of sediment parameters, those that affect only sediment, and those that affect flow and sediment.
See the Table below from Abbaspour et al., (2007).

Table 1 List of SWAT’s parameters that were fitted and their final calibrated values

Variable Sensitive parameters Final parameter
value
Parameters sensitive to all four variables — snowfall temperature, SFTMP.bsn* 1.1°
— Melt factor for snow on December 21, SMFMN.bsn 0.36
— Melt factor for snow on June 21, SMFMX.bsn 2.84
— Snowmelt base temperature, SMTMP.bsn 2.8
— Snowmelt temperature lag factor, TIMP.bsn 0.29
— Baseflow alpha factor, v__ALPHA_BF.gw" [0.17,0.34]
— Groundwater delay time, v__GW_DELAY.gw 0.74
— Curve number, r__CN2.mgt [0.085,0.045]
— Manning’s n value for the main channel, v__CH_N2.rte [0.0,0.3]
— Effective hyd. cond. in the main channel, v__CH_K2.rte [4,14]
— Soil available water storage capacity, r__SOL_AWC.sol [-0.17,0.3]
— Soil hydraulic conductivity, r__SOL_K.sol [-0.19,0.5]
— Soil bulk density, r__SOL_BD.sol [-0.02.7,0.3]
— Maximum canopy storage, v__CANMX.hru__AGRR? 2.8
— Maximum canopy storage, v__CANMX.hru__FRST 4.8
— Maximum canopy storage, v__CANMX.hru__PAST 4.1
Parameters sensitive to sediment only — Sediment routing factor in main channels, v__PRF.bsn [0.2,0.25]
— Channel re-entrained exponent parameter v__SPEXP.bsn [1.35,1.47]
— Channel re-entrained linear parameter v__SPCON.bsn [0.001,0.002]
— Channel erodability factor, v__CH_EROD.rte [0.12,0.14]
— Channel cover factor, v__CH_COV.rte [0.2,0.25]
Parameters sensitive to total — Phosphorus availability index, v__PSP.bsn [0.5,0.7]
phosphorus only — P enrichment ratio with sediment loading, ERORGP.hru [2.0,4.0]
— Rate constant for mineralization of organic P, BC4.swq [0.3,0.5]
— Organic P settling rate, RS5.swq [0.08,0.1]
Parameters sensitive to nitrate only — Nitrogen in rain, RCN.bsn 1.3
— Nitrogen uptake distribution parameter, UBN.bsn 9.4
— Concentration of NO; in groundwater, r__ GWNO3.gw [-0.3,0.5]
— Organic N enrichment for sediment, ERORGN. hru 2.75
— Nitrate percolation coefficient, NPERCO.bsn 0.223
Parameters sensitive to sediment — support practice factor r__USLE_P.mgt [-0.6, -0.1]
and total phosphorus — water erosion factor v__USLE_C.crp____AGRR [0.03,0.3]
— water erosion factor v__USLE_C.crp____ PAST,ORCD [0.07,0.2]
— water erosion factor v__USLE_C.crp____ FRST [0.0,0.1]
— soil erodability factor, r__USLE_K.sol [-0.19,0.5]

? The extension (.bsn) refers to the SWAT file type where the parameter occurs.

" The fixed values indicate that a parameter was fitted and then fixed.

© The qualifier (v__) refers to the substitution of a parameter by a value from the given range, while (r__) refers to a relative change in
the parameter were the current values is multiplied by 1 plus a factor in the given range.

4 AGRR = agricultural, PAST = pasture, ORCD = orchard, FRST = forest.

Initially, add the parameters that only affect sediment and run an iteration. You should get the same
discharge results as before, so try calibrating only for the sediment parameters that don’t affect the flow
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first. After, one or two iterations, if sediment results are not satisfactory, then add the other parameters
that affect sediment and flow and do a couple of iterations by allowing flow parameters to also change
slightly.

For Nitrate repeat the same procedure with nitrate parameters. Note that for calibrating phosphor you
must calibrate for sediment first, because much of the phosphor moves with sediment, but nitrate can
be calibrated without sediment.

It is important to also note that the solution to the calibrated model is the 95PPU generated by
the parameter ranges. DO NOT try to only use the best parameter set for further analysis. By
doing this you are assuming that the calibrated model only has one solution and this is not
correct. It is never correct to assume that only one set of parameters can represent a
watershed, which was modeled by very uncertain information about soil, landuse, climate,
management, measured data used for calibration, etc. Always propagate the range of
parameters you obtained during calibration for all purposes of model use.
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PSO

Particle Swarm Optimization
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Introduction to PSO

Particle swarm optimization (PSO) is a population based stochastic optimization technique developed by
Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking or fish schooling.

PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA).
The system is initialized with a population of random solutions and searches for optima by updating
generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In
PSO, the potential solutions, called particles, fly through the problem space by following the current
optimum particles. The detailed information will be given in following sections.

Compared to GA, the advantages of PSO are that PSO is easy to implement and there are few
parameters to adjust. PSO has been successfully applied in many areas: function optimization, artificial
neural network training, fuzzy system control, and other areas where GA can be applied.

There are two popular swarm inspired methods in computational intelligence areas: Ant colony
optimization (ACO) and particle swarm optimization (PSO). ACO was inspired by the behaviors of ants
and has many successful applications in discrete optimization problems.
(http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html)

The particle swarm concept originated as a simulation of simplified social system. The original intent was
to graphically simulate the choreography of bird of a bird block or fish school. However, it was found
that particle swarm model can be used as an optimizer.
(http://www.engr.iupui.edu/~shi/Coference/psopap4.html)

The algorithm

As stated before, PSO simulates the behaviors of bird flocking. Suppose the following scenario: a group
of birds are randomly searching food in an area. There is only one piece of food in the area being
searched. All the birds do not know where the food is. But they know how far the food is in each
iteration. So what's the best strategy to find the food? The effective one is to follow the bird which is
nearest to the food.

PSO learns from the scenario and uses it to solve the optimization problems. In PSO, each single solution
is a "bird" in the search space. We call it "particle". All of particles have fitness values which are
evaluated by the fitness function to be optimized, and have velocities which direct the flying of the
particles. The particles fly through the problem space by following the current optimum particles.

PSO is initialized with a group of random particles (solutions) and then searches for optima by updating
generations. In every iteration, each particle is updated by following two "best" values. The first one is
the best solution (fitness) it has achieved so far. (The fitness value is also stored.) This value is called
pbest. Another "best" value that is tracked by the particle swarm optimizer is the best value, obtained so
far by any particle in the population. This best value is a global best and called gbest. When a particle
takes part of the population as its topological neighbors, the best value is a local best and is called Ibest.

After finding the two best values, the particle updates its velocity and positions with the following
equations (a) and (b).

v[]1=v[]+cl*rand() * (pbest[ ] - present[ ]) + c2 * rand() * (gbest[] - present[]) (a)
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present[] = persent[] + v[ ] (b)
v[ ] is the particle velocity, persent[ ] is the current particle (solution). pbest[ ] and gbest[ ] are defined as
stated before. rand () is a random number between (0,1). c1, c2 are learning factors. usually c1 =c2 = 2.
The pseudo code of the procedure is as follows:
For each particle

Initialize particle

END
Do
For each particle
Calculate fitness value
If the fitness value is better than the best fitness value (pBest) in history
set current value as the new pBest
End
Choose the particle with the best fitness value of all the particles as the gBest
For each particle
Calculate particle velocity according equation (a)
Update particle position according equation (b)
End

While maximum iterations or minimum error criteria is not attained

Particles' velocities on each dimension are clamped to a maximum velocity Vmax. If the sum of
accelerations would cause the velocity on that dimension to exceed Vmax, which is a parameter
specified by the user, then the velocity on that dimension is limited to Vmax.

Comparisons between Genetic Algorithm and PSO

Most of evolutionary techniques have the following procedure:

1. Random generation of an initial population

2. Reckoning of a fitness value for each subject. It will directly depend on the distance to the optimum.

3. Reproduction of the population based on fitness values.

4. If requirements are met, then stop. Otherwise go back to 2.

From the procedure, we can learn that PSO shares many common points with GA. Both algorithms start
with a group of a randomly generated population, both have fitness values to evaluate the population.
Both update the population and search for the optimum with random techniques. Both systems do not
guarantee success.

However, PSO does not have genetic operators like crossover and mutation. Particles update themselves
with the internal velocity. They also have memory, which is important to the algorithm.

Compared with genetic algorithms (GAs), the information sharing mechanism in PSO is significantly
different. In GAs, chromosomes share information with each other. So the whole population moves like
a one group towards an optimal area. In PSO, only gBest (or IBest) gives out the information to others. It
is a one-way information sharing mechanism. The evolution only looks for the best solution. Compared
with GA, all the particles tend to converge to the best solution quickly even in the local version in most
cases.

7. Online Resources of PSO

The development of PSO is still ongoing. And there are still many unknown areas in PSO research such as
the mathematical validation of particle swarm theory.
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One can find much information from the internet. Following are some information you can get online:

http://www.particleswarm.net lots of information about Particle Swarms and, particularly, Particle
Swarm Optimization. Lots of Particle Swarm Links.

http://icdweb.cc.purdue.edu/~hux/PSO.shtml lists an updated bibliography of particle swarm
optimization and some online paper links

http://www.researchindex.com/ you can search particle swarm related papers and references.
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Introduction to the Program GLUE
A short summary of the GLUE (Beven and Binley, 1992) concept is given below. For more information
the readers are referred to the GLUE literature and the Internet.
The Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) was introduced
partly to allow for the possible non-uniqueness (or equifinality) of parameter sets during the estimation
of model parameters in over-parameterized models. The procedure is simple and requires few
assumptions when used in practical applications. GLUE assumes that, in the case of large over-
parameterized models, there is no unique set of parameters, which optimizes goodness-of fit-criteria.
The technique is based on the estimation of the weights or probabilities associated with different
parameter sets, based on the use of a subjective likelihood measure to derive a posterior probability
function, which is subsequently used to derive the predictive probability of the output variables. In
Romanowicz et al., (1994) a statistically motivated, more formal equivalent of GLUE is developed, where
the likelihood function is explicitly derived based on the error between the observed outputs and those
simulated by the model. This formal approach is equivalent to a Bayesian statistical estimation: it
requires assumptions about the statistical structure of the errors. GLUE is usually applied by directly
likelihood weighting the outputs of multiple model realizations (deterministic or stochastic, defined by
sets of parameter values within one or more model structures) to form a predictive distribution of a
variable of interest. Prediction uncertainties are then related to variation in model outputs, without
necessarily adding an additional explicit error component. There is thus an interesting question as to
whether an appropriate choice of likelihood measure can produce similar results from the two
approaches.
There are a number of possible measures of model performance that can be used in this kind of analysis.
The only formal requirements for use in a GLUE analysis are that the likelihood measure should increase
monotonously with increasing performance and be zero for models considered as unacceptable or non-
behavioral. Application-oriented measures are easily used in this framework. Measures based on formal
statistical assumptions, when applied to all model realizations (rather than simply in the region of an
“optimal” model) should give results similar to a Bayesian approach when used within a GLUE
framework (Romanowicz et al., 1994), but the assumptions made (additive Gaussian errors in the
simplest cases) are not always easily justified in the case of nonlinear environmental models with poorly
known boundary conditions.

A GLUE analysis consists of the following three steps:
1) After the definition of the “generalized likelihood measure” L(&), a large number of parameter sets

are randomly sampled from the prior distribution and each parameter set is assessed as either
“behavioral” or “non-behavioral” through a comparison of the “likelihood measure” with the given
threshold value.
2) Each behavioral parameter is given a “likelihood weight” according to:
L(6.
Wi :# (1)

PACH
k=1

where N is the number of behavioral parameter sets.
3) Finally, the prediction uncertainty is described as prediction quantile from the cumulative distribution
realized from the weighted behavioral parameter sets.

In literature, the most frequently used likelihood measure for GLUE is the Nash-Sutcliffe coefficient
(NS), which is also used in the GLUEQO6 program:
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Z(yt',\/l (9) - yt, )2
NS =1-"" (2)

Z(yq ~y)’

where n is the number of the observed data points, and Y, and yt'ivI (0) represents the observation and

model simulation with parameter 6 at time t; respectively, and Yy is the average value of the
observations.
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Coupling of GLUE to SWAT-CUP

SWAT-CUP is an interface to facilitate the coupling between external system analysis tools and SWAT
model. The following diagram illustrates the GLUE-SWAT-CUP links. Interface of GLUE and SWAT-CUP is
as follows:

Glue06.def —» Glue06.exe

v
model.in <

v

SWAT inputs «— SWAT_Edit.exe <«—— backup dir

—> SWAT.exe

'

SWAT outputs

v

glue_extract rch.def — GLUE extract rch.exe

¢ else

model .out

if max simulations reached

GLUE 95ppu.exe

v

o
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Validation of GLUE

After calibration, validation can be performed by using the “Validate” option from the menu. Before
executing validation, however, the GLUE_ obs.dat file must be edited to contain validation data,
GLUE_Extract_rch.def must be edited to extract validation data, and SWAT'’s File.cio and climate files
(pcp.pcp etc.) must cover the validation period as indicated in the window that appears when validation
is executed. The validation program uses the behavioral parameters only to run SWAT.

&) Reminder! ﬁ

...Go back
You need to edit the observed and other related files to reflect validation period

Continue...
Execute Validation program

Input files of GLUE are described below. They are for most parts self explanatory.
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File Definition

glue06.def

Line

parameter

value

Remark

// comment

MaxSimulation

10000

The larger, the better!

ParDefFile

glue_par.def

parameter definition file

ObjfunThresh

0.3

Threshold value given by the
user to separate the
behavioural parameters from
the non-behavioural
parameters

Percentile

0.025

The percentile used to calculate
the quantiles of behavioural
model results in line 14

ModelinFile

model.in

output of glue06.exe, and the
input of SWAT_Edit.exe

ModelOutFile

model.out

output of
GLUE_extract_rch.exe and
input of glue06.exe

ModelCmd

glue_run.cmd

Bach file executed during GLUE
run

ModelObjfunFile

glue_obs.dat

If the first parameter is “F”,
then the second parameter is
the observed data filename and
Nash-Sutcliffe is the objective
function.

If the first parameter is “T”,
then the second parameter is
the objective function filename
that must be calculated and
provided by the user

10

ModelParaSet

modelpara.out

The output filename for all
sampled parameter sets
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11 ModelBehParaset modelpara.beh The output filename for the
behavioural parameter sets

12 ModelResult modelres.out The output filename for all the
model results

13 ModelBehResult modelres.beh The output filename for the
behavioural model results

14 ModelResQaunt modelquant.out The output filename for the

quantiles of behavioural model
results
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ParaSol
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Introduction to the Program ParaSol

A short summary of the ParaSol (Van Griensven and Meixner, 2006) concept is given below. For more
information the readers are referred to the APPENDIX, the literature and the Internet.

The ParaSol method aggregates objective functions (OF’s) into a global optimization criterion
(GOC), minimizes these OF's or a GOC using the Shuffle Complex (SCE-UA) algorithm and performs
uncertainty analysis with a choice between 2 statistical concepts. The SCE algorithm is a global search
algorithm for the minimization of a single function for up to 16 parameters (Duan et al., 1992). It
combines the direct search method of the simplex procedure with the concept of a controlled random
search of Nelder and Mead (1965), a systematic evolution of points in the direction of global
improvement, competitive evolution (Holland, 1975) and the concept of complex shuffling. In a first step
(zero-loop), SCE-UA selects an initial ‘population’” by random sampling throughout the feasible
parameters space for p parameters to be optimized (delineated by given parameter ranges). The
population is portioned into several “complexes” that consist of 2p+1 points. Each complex evolves
independently using the simplex algorithm. The complexes are periodically shuffled to form new
complexes in order to share information between the complexes.

SCE-UA has been widely used in watershed model calibration and other areas of hydrology such
as soil erosion, subsurface hydrology, remote sensing and land surface modeling (Duan, 2003). It was
generally found to be robust, effective and efficient (Duan, 2003). The SCE-UA has also been applied
with success on SWAT for the hydrologic parameters (Eckardt and Arnold, 2001) and hydrologic and
water quality parameters (van Griensven and Bauwens, 2006). The procedure of ParaSol is:

1) After the optimization of the modified SCE-UA, the simulations performed are divided into ‘good’
simulations and ‘not good’ simulations by a threshold in this way similar to the GLUE methodology, and
accordingly, ‘good’ parameter sets and ‘not good’ parameter set. Unlike GLUE, the threshold value can
be defined by either the Xz—statistics where the selected simulations correspond to the confidence
region (CR) or Bayesian statistics that are able to point out the high probability density region (HPD) for
the parameters or the model outputs.

2) The prediction uncertainty is hence constructed equally from the ‘good’ simulations.

The Objective function used in ParaSol is Sum of the squares of the residuals (S5Q):

SSQ=> (¥, (0)-Y,)’ (3)
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Coupling ParaSol to SWAT-CUP

The dataflow between program ParaSol and SWAT-CUP is as shown below.

ParaSolin —» ParaSol.exe

v

model.in <

'

SWAT inputs <«— SWAT Edit.exe <«—— backup dir

L, SWAT.exe

v

SWAT outputs

v

ParaSol_extract rch.def — ParaSol_extract_rch.exe

'

model.out clse

l if max simulation reached

ParaSol 95ppu.exe

exit >
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Step-by-step procedure to run ParaSol in SWAT-CUP

1) Choose ParaSol program type.

2) Edit the input files in “Calibration Files”

3) Execute ParaSol2.exe under “Calibrate”

4) Examine the output in “Calibration Outputs”. ParaSol also requires a large number of runs (>5000)
Outputs of ParaSol are in the following files in Para_Sol.OUT:

95ppu.out Contains the 95% prediction uncertainty of good parameter
ParaSol.out Detailed outputs
Bestpar.out File with the best parameter set
Scepar.out File with all parameter sets used in SCE-UA optimization
Sceobjf.out File with all objective functions calculated during the SCE-UA optimization
Scegoc.out File with all objective functions (standardized) and the global optimization
criterion (GOC) calculated during the SCE-UA optimization
goodpar.out File with “good” parameters according to ParaSol
scepargoc.out File with all parameters and GOC values during SCE runs
summary_stat.out Summary statistics of all variables
VALIDATION

After calibration, validation can be performed by using the “Validate” option from the menu. Before
executing validation, however, the ParaSol_obs.dat file must be edited to contain validation data,

ParaSol_Extract_rch.def must be edited to extract validation data, and SWAT’s File.cio and climate files
(pcp.pcp etc.) must cover the validation period. The validation program uses the good parameters only

to run SWAT.
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ParaSol: optimization and uncertainty analysis tool

Ann van Griensven and Tom Meixner

ParaSol files:

File description

ParaSol.exe Executable for windows
ParaSol.f Fortran codes for ParaSol.exe
ParaSol.in Input file for ParaSol.exe

Simple_model.exe
Simple_model.f
Batchprogram.bat

Executable for example model in windows
Fortran codes for Simple_model.exe
Batch file that call simple_model.exe

Input4. Rainfall inputs for simple_model.exe

Model.in Input file for simple_model.exe (EAWAG
protocol)

Model.out Output file of simple_model.exe (EAWAG
protocol)

Introduction

PS-SG is a tool that performs an optimization and uncertainty analysis for model outputs. In incorporates
two methods: ParaSol (Parameter Solutions) that allows for the optimization of model parameters based
on SCE-UA algorithm (Duan et al.,, 1992) and uses the simulations to assess confidence ranges on
parameters and outputs (van Griensven and Meixner, 2003a).

Description of the ParaSol method

The ParaSol method aggregates objective functions (OF’s) into a global optimization criterion (GOC),
minimizes these OF's or a GOC using the SCE-UA algorithm and performs uncertainty analysis with a
choice between 2 statistical concepts.

The Shuffled complex evolution (SCE) algorithm

The SCE algorithm is a global search algorithm for the minimization of a single function for up to 16
parameters [Duan et al., 1992]. It combines the direct search method of the simplex procedure with the
concept of a controlled random search of Nelder and Mead [1965], a systematic evolution of points in
the direction of global improvement, competitive evolution [Holland, 1975] and the concept of complex
shuffling. In a first step (zero-loop), SCE-UA selects an initial ‘population’ by random sampling
throughout the feasible parameters space for p parameters to be optimized (delineated by given
parameter ranges). The population is portioned into several “complexes” that consist of 2p+1 points.
Each complex evolves independently using the simplex algorithm. The complexes are periodically
shuffled to form new complexes in order to share information between the complexes.
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SCE-UA has been widely used in watershed model calibration and other areas of hydrology such as
soil erosion, subsurface hydrology, remote sensing and land surface modeling (Duan, 2003). It was
generally found to be robust, effective and efficient (Duan, 2003). The SCE-UA has also been applied
with success on SWAT for the hydrologic parameters (Eckardt and Arnold, 2001) and hydrologic and
water quality parameters (van Griensven and Bauwens, 2003).

Objective functions to be used

Within an optimization algorithm it is necessary to select a function that must be minimized or
optimized that replaces the expert perception of curve-fitting during the manual calibration. There are a
wide array of possible error functions to choose from and many reasons to pick one versus another (for
some discussions on this topic see [Legates and McCabe, 1999; Gupta et al., 1998]). The types of
objective functions selected for ParaSol are limited to the following due to the statistical assumptions
made in determining the error bounds in ParaSol.

Sum of the squares of the residuals (55Q): similar to the Mean Square Error method (MSE) it aims at
matching a simulated series to a measured time series.

SSQ = Z [Xi,measured ~ X, simulated ]2 (1)

i=1,n
with n the number of pairs of measured (Xmeasured) and

simulated (Xsimulated) Variables

The sum of the squares of the difference of the measured and simulated values after ranking (SSQR): The
SSQR method aims at the fitting of the frequency distributions of the observed and the simulated series.

After independent ranking of the measured and the simulated values, new pairs are formed and the
SSQR is calculated as

SSQR = Z [Xj,measured - Xj,simulated ]2 (2)

j=Ln

where j represents the rank.

As opposed to the SSQ method, the time of occurrence of a given value of the variable is not accounted
for in the SSQR method (van Griensven and Bauwens, 2003).

Multi-objective optimization

Since the SCE-UA minimizes a single function, it cannot be applied directly for multi-objective
optimization. Although there are several methods available in literature to aggregate objective functions
to a global optimization criterion (Madsen, 2003; van Griensven and Bauwens, 2003), they do not
foresee further application of uncertainty analysis.
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A statistically based aggregation method is found within the Bayesian theory (1763). By assuming that
the residuals have a normal distribution N(0, 6°), the variance is estimated as

J2 — SSQM|N (3)
nobs

with SSQun the sum of the squares at the optimum and n,ps the number of observations (Box and Tiao,
1973):. The probability of a residual for a given parameter set depends on a specific time series of data
and can then be calculated as:

(yt,sim - yt,obs )2

207

exp| —

(4)

1
PO Yions) = Jio”
o

or

(yt,sim - yt,obs )2

207

p(o | yt,obs) o eXp| — (5)

for a time series (1..T) this gives

T
p(0 | Yobs) = T Hexp - (6)

2alo?| = 20°

or

T
Z (yt,sim - yt,obs )2
P(O[Yo) o exp| -+ >
20

(7)

For a certain time series Y,,s the probability of the parameter set 8 p(6|Y.ps) is thus proportional to

DYy, o exp{— ZSSQ} (8)

2
>!<O—1

where SSQ; are the sum of the squares of the residuals with corresponding variance o, for a certain time
series. For 2 objectives, a Bayesian multiplication gives:

R e O e .

w2
0, 2%*0,
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Applying equation (3), (9) can be written as:

P@IY,,) =C2* exp {— SSQI*”ObSI}*exp {_ W”Obsz} (10)

SSQl,min SSQZ,min
In accordance to (10), it is true that:

J]=C3+ SSQ, *nobs, . SSQ, *nobs, (11)

In[- p(@]Y,
n[ p( | obs SSQZmin SSQ2,min

We can thus optimize or maximize the probability of (11) by minimizing a Global Optimization Criterion
(GOC) that is set to the equation:

SSQ, *nobs, N SSQ, *nobs, (12)
SSQl,min SSQZ,min

GOC =

With equation (11), the probability can be related to the GOC according to:
P(O|Yas) o exp[-GOC] (13)

The sum of the squares of the residuals get thus weights that are equal to the number of observations
divided by the minimum. The minima of the individual objective functions (SSQ or SSQR) are however
initially not known. After each loop in the SCE-UA optimization, an update is performed for these
minima of the objective functions using the newly gathered information within the loop and in
consequence, the GOC values are recalculated.

The main advantage of using equation 12 to calculate the GOC is that it allows for a global uncertainty
analysis considering all objective functions as described below.

Uncertainty analysis method

The uncertainty analysis divides the simulations that have been performed by the SCE-UA optimization
into ‘good’ simulations and ‘not good’ simulations and in this way is similar to the GLUE methodology
[Beven and Binley, 1992]. The simulations gathered by SCE-UA are very valuable as the algorithm
samples over the entire parameter space with a focus of solutions near the optimum/optima. To
increase the usefulness of the SCE-UA samples for uncertainty analysis, some adaptations were made to
the original SCE-UA algorithm, to prevent being trapped in a localized minimum and to allow for a better
exploration of the full parameter range and prevent the algorithm from focusing on a very narrow set of
solutions. The most important modifications are:

1. After each loop, the m worst results are replaced by random sampling this change prevents the
method from collapsing around a local minimum (where m is equal to the number of
complexes). Similarly, Vrugt et al. (2003) solved this problem of collapsing in the minimum by
introducing randomness. Here however, the randomness was introduced for the replacement of
the best results.

2. When parameter values are under or over the parameter range defined by SCE-UA, they get a
value equal to the minimum bound or maximum bound instead of a random sampled value .
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The ParaSol Algorithm uses two techniques to divide the sample population of SCE-UA into “good”
and “bad” simulations. Both techniques are based on a threshold value for the objective function (or
global optimization criterion) to select the ‘good’ simulations by considering all the simulations that give
an objective function below this threshold. The threshold value can be defined by Xz—statistics where
the selected simulations correspond to the confidence region (CR) or Bayesian statistics that are able
point out the high probability density region (HPD) for the parameters or the model outputs (figure 1).

2’-method

For a single objective calibration for the SSQ, the SCE-UA will find a parameter set ©* consisting of the
p free parameters (e*;, e*,,.. 8*,), that corresponds to the minimum of the sum the square SSQ.
According to y’statistics (Bard, 1974), we can define a threshold “c” for “good’ parameter set using
equation

2
c=OF(6%)*(1+ M) (14)
n-p
whereby the xzplo_% gets a higher value for more free parameters p .

For multi-objective calibration, the selections are made using the GOC of equation (12) that
normalizes the sum of the squares for n, equal to the sum of nobs1 and nobs2, observation. A threshold
for the GOCis calculated by:

2
c =GOC(9*)*(I+¢) (15)
nobsl + nobs2 — p

thus all simulations with GOC < Xgocmin + are deemed acceptable

Bayesian method

According to the Bayesian theorem, the probability p(6|Y.ws) of a parameter set 8 is proportional to
equation (11).

After normalizing the probabilities (to ensure that the integral over the entire parameter space is
equal to 1) a cumulative distributions can be made and hence a 95% confidence regions can be defined.
As the parameters sets were not sampled randomly but were more densely sampled near the optimum
during SCE-UA optimisation, it is necessary to avoid having the densely sampled regions dominate the
results. This problem is prevented by determining a weight for each parameter set 6; by the following
calculations:

1. Dividing the p parameter range in m intervals
2. For each interval k of the parameter j, the sampling density nsamp(k,j) is calculated by summing the
times that the interval was sampled for a parameter j.
A weight for a parameter set 6; is than estimated by
1. Determine the interval k (between 1 and m) of the parameter 6,
2. Consider the number of samples within that interval = nsamp(k,j)
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3. The weight is than calculated as

1/p
W, - {f[nsamp(k, j)} (16)

j=li
The “c” threshold is determined by the following process:
a. Sort parameter sets and GOC values according to decreasing probabilities
b. Multiply probabilities by weights
c. Normalize the weighted probabilities by division using PT with

;
PT = Y W(0)*P(0) V) (17)

i=1
d. Sum normalized weighted probabilities starting from rank 1 till the sum gets higher than the

cumulative probability limit (95% or 97.5%). The GOC corresponding to or closest to the probability limit
defines the “c” threshold.
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Using ParaSol

It uses an input file “ParaSol.in”. It operates by communicating to the model through input and output
files. Input of the model is printed in “model.in” that containes the new parameter values. There are 2
options to communicate with the output:
1. “modelof.out” with the objective functions OR
2. “model.out” with the output values and “data.obs” with the observed values.
For option 2, the model will calculate objective functions based on equation 1.
ParaSol.exe is programmed to run a batchfile “programbatch.bat”, containing the necessary commands
for the execution of the following:
1. reading the parameters listed in “model.in” and changing the model input files for these
parameters values.
2. running the program
3. reading output of the program and printing the objective function(s) into a “modelof.out” file in
the right format (if iflag>0)

The ParaSOl package contains an example for the application (simple_model.exe) that is a contains a
model with 2 parameters ec [0,200] and ek [0,1], having an optimum at the parameter set (100,0.3).
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simple_model.exe performs the 3 previously mentioned tasks and is called from the in the
“programbatch.bat” file.

For running PS-SG on another applications “otherapplication.exe”, it is thus necessary:

1. To create the appropriate ParaSol.in file, listing all parameters (up to 100) and ranges to be
considered and indicating the number of objective functions to consider (up to 40)

2. Having a program “changeinputs.exe” that changes the input files for “otherapplication.exe”
according to the values in “ParaSol.in”

3. Having a program “makeobjf.exe” that will read the outputs of “otherapplication.exe”,
calculates the objective functions and writes these to the file “modelof.out” (or writes the
model.out file with simulations according to the EAWAG format in case of iflag=0).

4. Putthe commands “changeinputs.exe”, “otherapplication.exe” and “makeobijf.exe” (if iflag>0) in
the “programbatch.dat” file.

CHANGEPAR
This section follows the previous section. Each parameter has one row, containing lower limit, upper
limit, and the parameter name (up to 250 digits), all in free format.

Output files

File name Description

ParaSol.out Detailed outputs.

Bestpar.out File with the best parameter set

Scepar.out File with all parameter sets used in SCE-UA optimization

Sceobj.out File with all objective functions calculated during the SCE-
UA optimization

Scegoc.out File with all objective functions (standardized) and the
GOC calculated during the SCE-UA optimization

goodpar.out File with “good” parameters according to ParaSol

scepargoc.out File with all parameters and goc values during sce runs.

Rerun the model with good parameter sets

This option only makes sense if you have your model output according to the EAWAG protocol. If you
put ISTEP=2 in the ParaSol.in file, the model will rerun all the good parameter sets (in goodpar.out) and
calculate the minimum and maximum bounds for the model output (in model.out). These mimimum and
maximum values will we printed in the files modelminval.out and modelmaxval.out respectively.
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MCMC

Markov Chain Monte Carlo
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Introduction to MCMC

MCMC generates samples from a random walk which adapts to the posterior distribution (Kuczera and
Parent, 1998). The simplest technique from this class is the Metropolis-Hasting algorithm (Gelman et al.
1995), which is applied in this study. A sequence (Markov Chain) of parameter sets representing the
posterior distribution is constructed as follows:

1) An initial starting point in the parameter space is chosen.

2) A candidate for the next point is proposed by adding a random realization from a symmetrical

jump distribution, f to the coordinates of the previous point of the sequence:

jump #
9:+1 = Hk + rand ( fjump) (13)
3) The acceptance of the candidate points depends on the ratio r:

fGPM‘Y (O:H |ymeas)

(14)
prosl‘Y (ek |ymeas )

If r >= 1, then the candidate point is accepted as a new point with probability r. If the candidate point is
rejected, the previous point is used as the next point of the sequence.

In order to avoid long burn-in periods (or even lack of convergence to the posterior distribution) the
chain is started at a numerical approximation to the maximum of the posterior distribution calculated
with the aid of the shuffled complex global optimization algorithm (Duan et al., 1992).
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Step-by-step running of MCMC

The MCMC in SWAT-CUP is based on the procedures developed by Peter Reichert in the UNCSIM package. For more detail we refer the reader to
http://www.uncsim.eawag.ch/. To run MCMC the following input files must be created:

mcmc.def

Model
External_ModellnFile
External_ModelOutFile
External_ModelExecFile

ParDefFile
PriorDistFile
LikeliDefFile
JumpDistFile
SampSize

ResValFile

ResidValFile
PostMarkovChainParSampFile
PostMarkovChainParQuantFile
PostMarkovChainResSampFile
PostMarkovChainResQuantFile
PostMarkovChainPdfSampFile

External
mcmec.in
mcmc.out
mcmc_run.bat

mcmc_par.def
mcmc_prior.def
mcmc_obs.dat
mcmc_jump.def
100

mcmc_best.out
mcmc_resid.out
mcmc_parsamp.out
mcmc_parquant.out
mcmc_ressamp.out
mcmc_resquant.out
mcmc_pdfsamp.out

//parameter file generated internally
//simulation file created internally
//batch file to start memc

//paerrameter definition file to be prepared by user
//parameter priors to be prepared by user
//observation file to be prepared by user

//jump distribution file to be prepared by user
//number of run to be made by mcmc

//best solution

//residual of best solution

//Markov Chain of parameters
/quantiles of parameter distribution
//Markov Chain of result

//quantile of Markov Chain residuals
//Markov Chain of pdf of posterior
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mcmc_par.def

Name Value Minimum | Maximum | Scale UncRange | Increment | ActSens | ActEstim | Unit Description
r__ CN2.mgt -0.37213 -0.8 0.2 0.3 0.03 003 |T T 0.2

r__ ALPHA_BF.gw -0.32866 -0.85 0.2 0.325 0.0325 0.0325 | T T 0.2

r_ GW_DELAY.gw | 0.404144 -0.2 0.9 0.35 0.035 0.035 | T T 0.9

r_ CH_N2.rte -0.14402 -0.8 0.8 1 0.1 0.1 |T T 0.8
v__CH_K2.rte 6.205686 1 10 5.5 0.55 055 | T T 10

Lamdal 0.5 0 1 1 0.1 0.1|F F

Lamda2 0 0 10 1 0.1 0.1|F F

Std_Dev_Out 1 0.1 10 1 0.1 0.1|F F

Value - initial estimate of parameter value
Minimum - minimum parameter value
Maximum - maximum parameter value

Scale -
UncRange -

Increment - parameter increment for step changes in Value within Mimimum-Maximum

ActSens -
ActEstim -
Unit -
Description -
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mcmc_obs.dat

ResCode | Dat Transformation | Par_1 Par_2 Dist Mean | Std_Dev

1 21.41 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
2 23.943 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
3 99.956 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
4 100.169 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
5 53.057 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
6 32.07 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
7 9.286 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
8 1.784 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
9 6.586 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
10 11.948 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
11 14.812 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
12 14.681 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out
...... 16.261 | BoxCox Lamdal Lamda2 Normal 0 | Std_Dev_Out

ResCode - label of measured data points
Dat - data value
Transformation - transformation to be performed on the data, i.e., Box Cox transformation
Par_1 - the first parameter of the transformation

Par_2 - the second parameter of the transformation

Dist - distribution of the data point
Mean - mean of the distribution of the data point

Std_Dev - standard deviation of the distribution of the data pint

mcmc_prior.def

Name Dist Par_1 Par_2

r__CN2.mgt Uniform -0.8 0.2
r__ALPHA BF.gw Uniform -0.85 0.2
r__GW_DELAY.gw | Uniform -0.2 0.9
r__CH_N2.rte Uniform -0.8 0.8
v__CH_K2.rte Uniform 1 10
r__SOL_AWC.sol Uniform -0.2 0.6

Dist - parameter distribution
Par_1 - first moment of the distribution
Par_2 - second moment of the distribution
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Prepare the mcmc_jump.def file according to the following format. A short run maybe necessary
first, in order to generate reasonable numbers.

mcmc_jump.def

Name Dist Par_1 Par_2

r__CN2.mgt Normal 0 0.003
r__ALPHA_BF.gw Normal 0 | 0.00325
r__GW_DELAY.gw Normal 0 0.0035
r__CH_N2.rte Normal 0 0.01
v__CH_K2.rte Normal 0 0.055
r _SOL_AWC.sol Normal 0 0.002

Name - parameter name

Dist - parameter distribution

Par_1 - first moment of the distribution
Par_2 - second moment of distribution

The jump distributions are quite important to convergence and require some initial trial and error
runs to specify.

mcmc_run.bat

SWAT_Edit.exe //program to insert generated parameters in swat input files
swat2005.exe //swat program either swat2000 or swat2005
MCMC_extract_rch.exe | //program to extract the desired outputs from swat output files

7- Run the program executing mcmc_start.bat

Note: Please ignore the following error during the run:

Lamdal 8.5
w=¥xBad parameter name: Lamdal
##xPlease specify the way to change the parameter(srt

¥ Fail to parse parameter: Lamdal
P rogram 5tops e

97




Reference

Abbaspour, K. C. E. Rouholahnejad, S. Vaghefi, R. Srinivasan, B. Kléve. 2014. Modelling hydrology
and water quality of the European Continent at a subbasin scale: calibration of a high-
resolution large-scale SWAT model. Journal of Hydrology, 524: 733-752.

http://www.sciencedirect.com/science/article/pii/S0022169415001985

Abbaspour, K.C., J. Yang, |. Maximov,., R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, R. Srinivasan.
2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using
SWAT. Journal of Hydrology, 333:413-430.

Abbaspour, K.C., 2005. Calibration of hydrologic models: when is a model calibrated? In Zerger, A.
and Argent, R.M. (eds) MODSIM 2005 International Congress on Modelling and Simulation.
Modelling and Simulation Society of Australia and New Zealand, December 2005, pp. 2449-
12455. ISBN: 0-9758400-2-9. http://www.mssanz.org.au/modsim05/papers/abbaspour.pdf

Abbaspour, K.C., Johnson, A., van Genuchten, M.Th, 2004. Estimating uncertain flow and transport
parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal 3(4),
1340-1352.

Abbaspour, K. C., R. Schulin, M. Th. Van Genuchten, 2001. Estimation of unsaturated soil hydraulic
parameters using ant colony optimization. Advances in Water Resources, 24: 827-841.

Abbaspour, K. C., M. Sonnleitner, and R. Schulin. 1999. Uncertainty in Estimation of Soil
Hydraulic Parameters by Inverse Modeling: Example Lysimeter Experiments. Soil Sci. Soc.
of Am. J., 63: 501-509.

Abbaspour, K. C., M. Th. van Genuchten, R. Schulin, and E. Schlappi. 1997. A sequential
uncertainty domain inverse procedure for estimating subsurface flow and transport
parameters. Water Resour. Res., v. 33, no. 8., pp. 1879-1892.

Arnold, J.G., Srinivasan R., Muttiah R.S., Williams J.R., 1998. Large area hydrologic modeling and
assessment - Part 1: Model development. Journal of the American Water Resources
Association 34(1), 73-89.

Bard, 1974. Non Linear Parameter Estimation. Academic Press, New York N.Y.

Box, G.E.P., and G.C.Tiao. Bayesian Inference in Statistical Analysis, Addison-Wesley-Longman,
Reading, Mass, 1973.

Beven, K. and Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation in
mechanistic modelling of complex environmental systems using the GLUE methodology.
Journal of Hydrology, 249(1-4): 11-29.

Beven, K. and Binley, A., 1992. The Future of Distributed Models - Model Calibration and
Uncertainty Prediction. Hydrological Processes, 6(3): 279-298.

Duan, Q., Global Optimization for Watershed Model Calibration, in Calibration of Watershed
Models, edited by Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, and R. Turcotte, pp.
89-104, AGU, Washington, DC, 2003.

Duan, Q., V. K. Gupta, and S. Sorooshian, Effective and efficient global optimization for conceptual
rainfall-runoff models, Water. Resourc. Res., 28:1015-1031, 1992.

Duan, Q., S. Sorooshian, H. V. Gupta, A. N. Rousseau, and R. Turcotte, Advances in Calibration of
Watershed Models,AGU, Washington, DC, 2003.

Eckhardt K and J.G. Arnold. Automatic calibration of a distributed catchment model. , J. Hydrol.,
251:103-109. 2001.

Faramarzi, M., K.C. Abbaspour, H. Yang, R. Schulin. 2008. Application of SWAT to quantify internal
renewable water resources in Iran. Hydrological Sciences. DOI: 10.1002/hyp.7160.

Gelman, S., Carlin, J.B., Stren, H.S., Rubin, D.B., 1995. Bayesian Data Analysis, Chapman and Hall,
New York, USA.

98



Gupta, H. V., S. Sorooshian, and P. O. Yapo, 1998. Toward improved calibration of hydrologic
models: multiple and noncommensurable measures of information, Water. Resourc. Res.,
34:751-763.

Gupta, H. V., S. Sorooshian, and P. O. Yapo. 1999. Status of auto-matic calibration for hydrologic
models: Comparison with mul-tilevel expert calibration. J. Hydrologic Eng., 4(2): 135-143

Gupta, H.V,, Kling, H., Yilmaz, K.K., Martinez, G.F.2009. Decomposition of the mean squared error
and NSE performance criteria: implications for  improving  hydrological
modelling.J.Hydrol.377, 80-91.

Holland, J.H. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann
Arbor, Ml, 183 p, 975, 1975.

Hornberger, G.M. and Spear, R.C., 1981. An Approach to the Preliminary-Analysis of Environmental
Systems. Journal of Environmental Management, 12(1): 7-18.

Krause, P., D.P. Boyle, F. Biase, 2005. COmparison of different efficiency criteria for hydrological
model assessment, Adv. In Geoscheices, 5:89-97.

Kuczera, G., Parent, E., 1998. Monte Carlo assessment of parameter uncertainty in conceptual
catchment models: the Metropolis algorithm. Journal of Hydrology, 211(1-4): 69-85.

Legates, D. R. and G. J. McCabe, 1999. Evaluating the use of "goodness-of-fit" measures in
hydrologic and hydroclimatic model validation. Water. Resou. Res., 35:233-241.

Madsen, H., Parameter estimation in distributed hydrological catchment modelling using
automatic calibration with multiple objectives. Advances in water resources, 26, 205-216,
2003.

Marshall, L., D. Nott, and A. Sharma 2004. A comparative study of Markov chain Monte Carlo
methods for conceptual rainfall-runoff modeling. Water Resources Research, 40, W02501,
do0i:10.1029/2003WR002378.

McKay, M.D., Beckman, R. J., Conover, W.J., 1979. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics. 21,
239-245.

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Haemel, R.D., Veith, T.L. 2007. Model
evaluation guidelines for systematic qualification of accuracy in watershed simulation.
Transactions of the ASABE, 50:885-900.

Nash, J. E., J. V. Sutcliffe, 1970. River Flow Forecasting through Conceptual Models 1. A Discussion
of Principles. Journal of Hydrology 10(3), 282-290.

Nelder, J.A., R. A. Mead, simplex method for function minimization, Computer Journal, 7, 308-313,
1965.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1992. Numerical Recipe, The Art of
Scientific Computation. 2™ ed. Cambridge University Press, Cambridge, Great Britain.

Romanowicz, R. J., Beven K., and Tawn J. 1994. Evaluation of Predictive Uncertainty in Nonlinear
Hydrological Models Using a Bayesian Approach. In: Statistics for the Environment 2, Water
Related Issues ,eds V. Barnett and K. F. Turkman, 297-315, Wiley, Chichester.

Rouholahnejad E, Abbaspour KC, Vejdani M, Srinivasan R, Schulin R, Lehmann A. 2012.
Parallelization framework for calibration of hydrological models, Environmental Modelling
Software, 31: 28-36.

Schuol, J., K.C. Abbaspour, R. Srinivasan, and H.Yang. 2008a. Modelling Blue and Green Water
Availability in Africa at monthly intervals and subbasin level. Water Resources Research. VOL.
44, W07406, doi:10.1029/2007WR006609.

Schuol, J., Abbaspour, KC., Sarinivasan, R., Yang, H. 2008b. Estimation of freshwater availability in
the West African Sub-continent using the SWAT hydrologic model. Journal of Hydroloy.
352(1-2):30-49.

99



van Griensven A. and W. Bauwens. 2003. Multi-objective auto-calibration for semi-distributed
water quality models, Water. Resourc. Res. 39 (12): Art. No. 1348 DEC 16.

Van Griensven, A., Meixner, T., 2006. Methods to quantify and identify the sources of uncertainty

for river basin water quality models. Water Science and Technology, 53(1): 51-59.

Vrugt, J. A.,, H. V. Gupta, W. Bouten, and S. Sorooshian. 2003. A shuffled Complex Evolution
Metropolis Algorithm for Estimating Posterior Distribution of Watershed Model Parameters,
in Calibration of Watershed Models , ed. Q. Duan, S. Sorooshian, H. V. Gupta, A. N. Rousseau,
and R. Turcotte, AGU Washington DC, DOI: 10.1029/006WS07.

Yang, J., Reichert, P., Abbaspour, K.C., Yang, H., 2007. Hydrological Modelling of the Chaohe Basin
in China: Statistical Model Formulation and Bayesian Inference. Journal of Hydrology, 340:
167-182.

Yang, J., Abbaspour K. C., Reichert P., and Yang H. 2008. Comparing uncertainty analysis
techniques for a SWAT application to Chaohe Basin in China. In review. Journal of Hydrology.
358(1-2):1-23.

Yapo, P. O., Gupta, H.V., Sorooshian, S., 1998. Multi-objective global optimization for hydrologic
models. J. of Hydrol. 204, 83-97.

100



