2015 International conference Soil and Water Assessment Tool

Impact of best management practices to improve water quality from mountainous catchment: Haean catchment in South Korea

26thJune 2015

Ganga Ram Maharjan

Contact:Ganga-Ram.Maharjan@uni-bayreuth.de

Complex TERRain and ECOlogical Heterogeneity

International Research Training Group DFG / KOSEF

Contents

1 Research issues

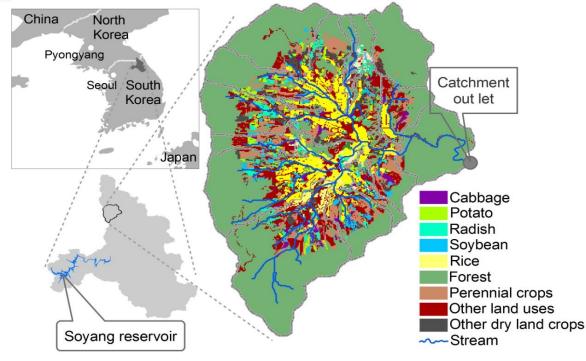
......

2 Study area

.......

3 Objective

4 Methodology



6 Conclusion

- Intensive dry and wet land agriculture in mountainous landscape
- Excess use of fertilization
- Steep slopes
- Monsoon rain
- Export large amount of sediment and nutrients
- Water quality problem

1.Research issues 2. Study area 3. Objective 4. Methodology 5. Results 6.Conclusion

Location of Study Area (Haean Catchment)

Gangwon Provience near Demilitarized Zone (DMZ) between North and South Korea.

Area: 62 Km²

Land Use:

Forest and Orchard: 62 % Annual Dry land: 26 % Wet land/Rice: 8 %

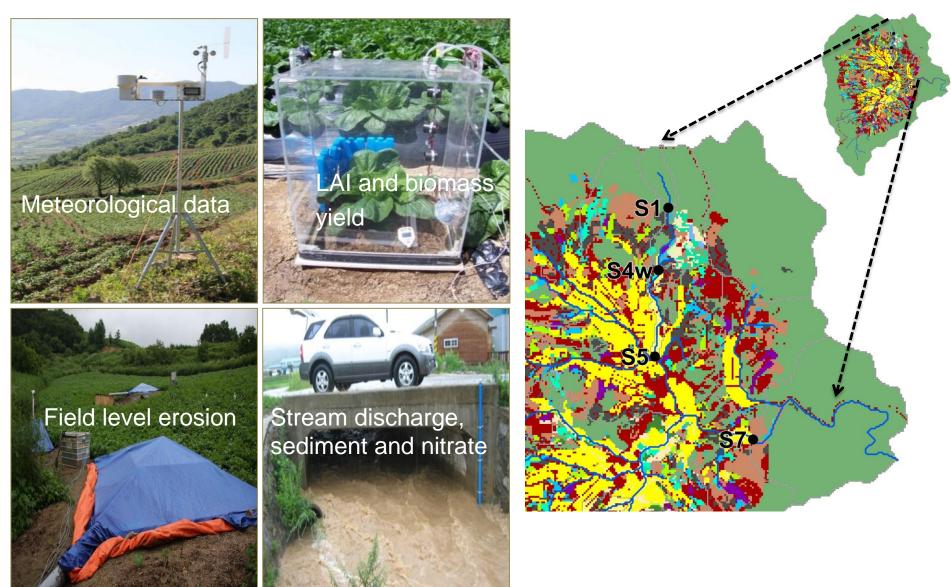
Annual Precipitation (pcp): 1650mm 70% of pcp June-August

- To evaluate current land use system and management practices
- To improve the water quality by using Best Management Practices (BMPs)
 - Reduce sediment and nitrate export
- To evaluate the effectiveness BMPs
- To provide recommendation of BMPs

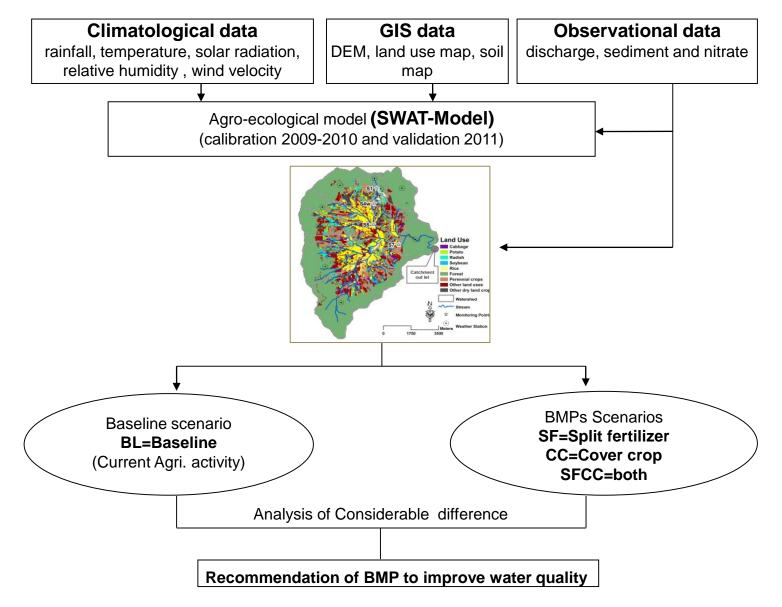
BMPs scenarios to mojor dry land crops

Baseline scenario :- BLSplit fertilizer scenario:- SFCover crop scenarios:- CCCombined scenario:- SFCC

<u>1. BL scenario:</u>•Single fertilizer application•Land are barren after harvest

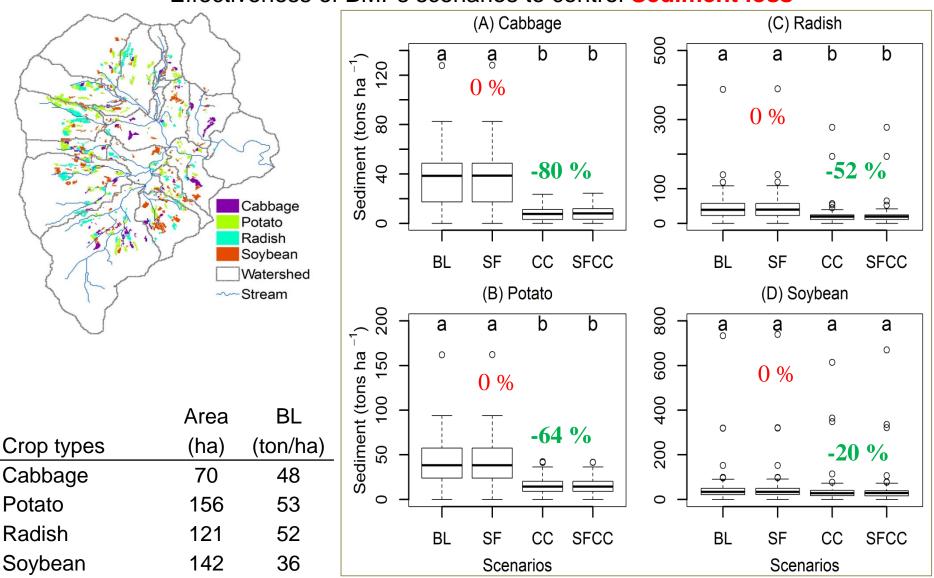

<u>2. SF scenario:</u>Multiple fertilizer applicationLand are barren after harvest

3. CC scenario:

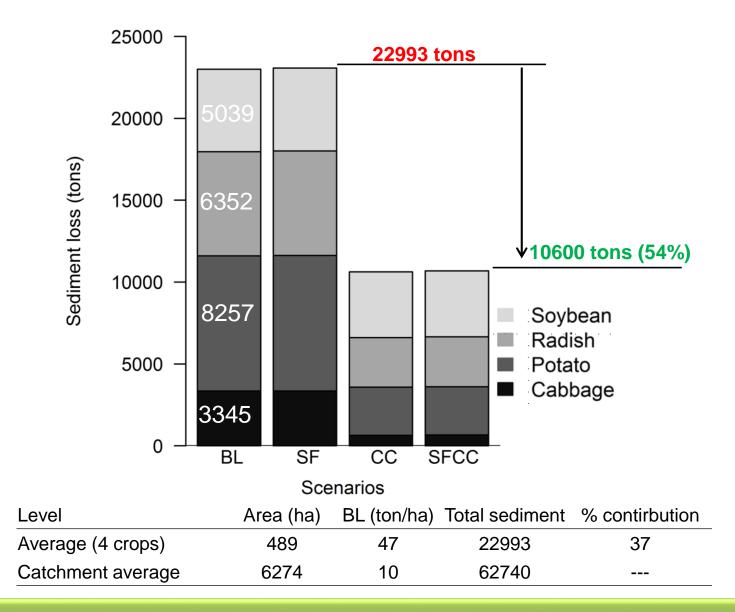

Single fertilizer applicationCover crop after harvest

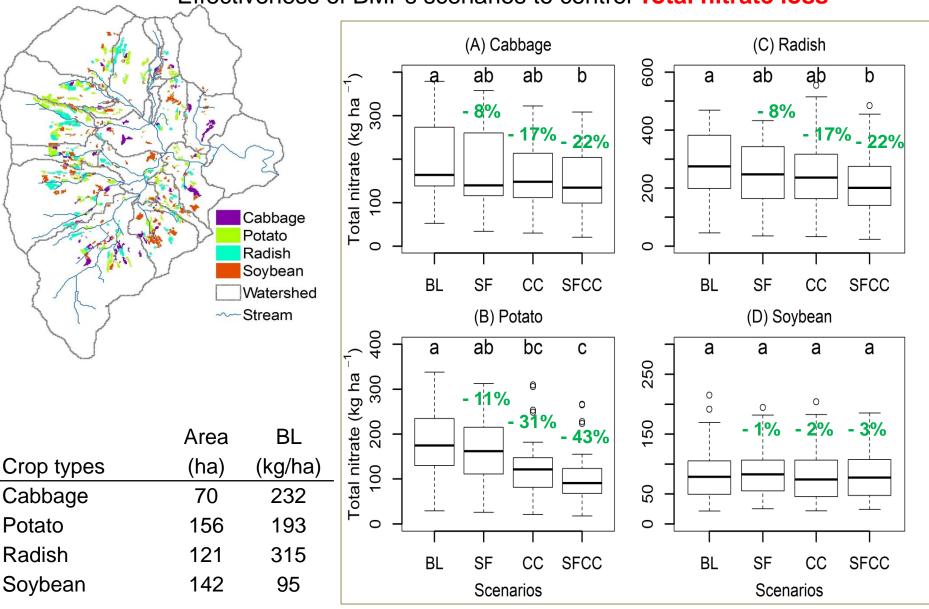
<u>4. SFCC scenario:</u>•Multiple fertilizer application•Cover crop after harvest

Experimental setup: Data generation

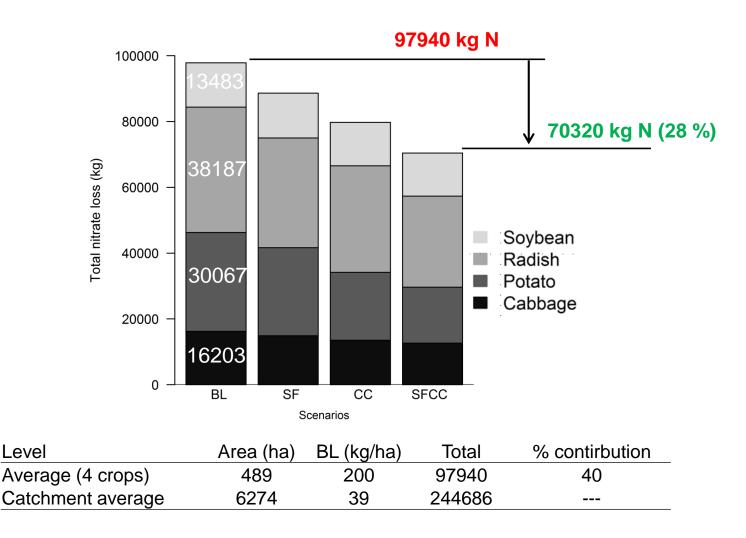

Methodological frame work

Model calibration and validation

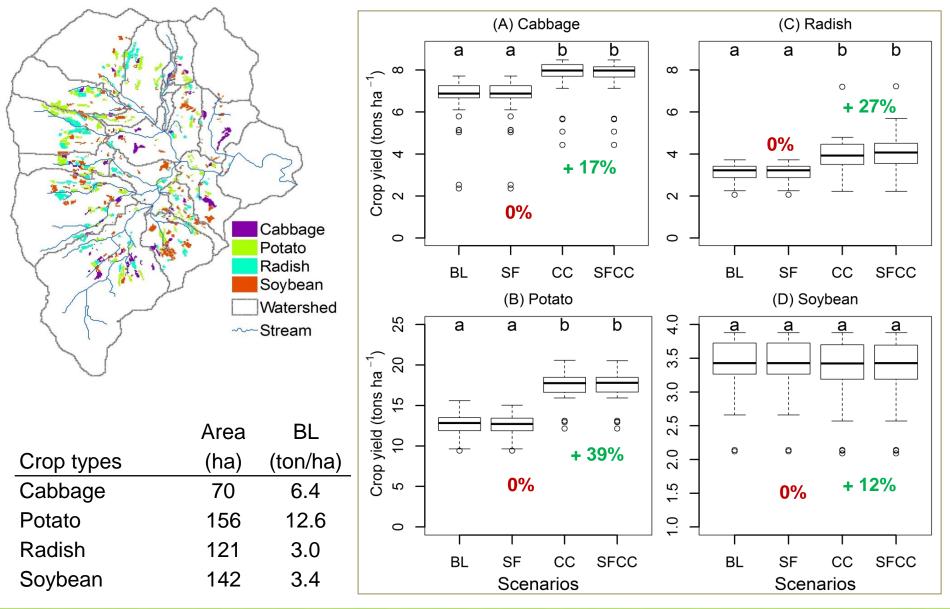

		Calibration (2009-2010)			Validation (2011)			
Variable	Stream site	R^2	NSE	PBIAS(%)	R^2	NSE	PBIAS(%)	
	S1	0.76	0.72	2.7	0.75	0.56	43.8	
Discharge	S4W*	0.8	0.6	-1.9	0.68	0.02	43.4	
	S5	0.89	0.88	-5.7	0.74	0.50	66.7	
	S7	0.82	0.75	-38.9	0.85	0.73	-33.2	
Average		0.82	0.74	-10.95	0.76	0.45	30.18	
	S1	0.98	0.82	13.0	0.64	0.56	-38.9	
Sediment	S4W*	0.87	0.86	6.8	0.78	0.35	125.7	
	S5	0.92	0.87	15.6	0.84	0.60	72.2	
	S7	0.82	0.58	-47	0.92	0.90	11.6	
Average		0.90	0.78	-2.9	0.80	0.60	42.65	
Nitrate**	S7	0.62	0.48	-40.10	0.61	0.52	34.1	


*Calibration period for stream site S4W was only 2010, **Nitrate calibrated and validated only for downstream site at S7

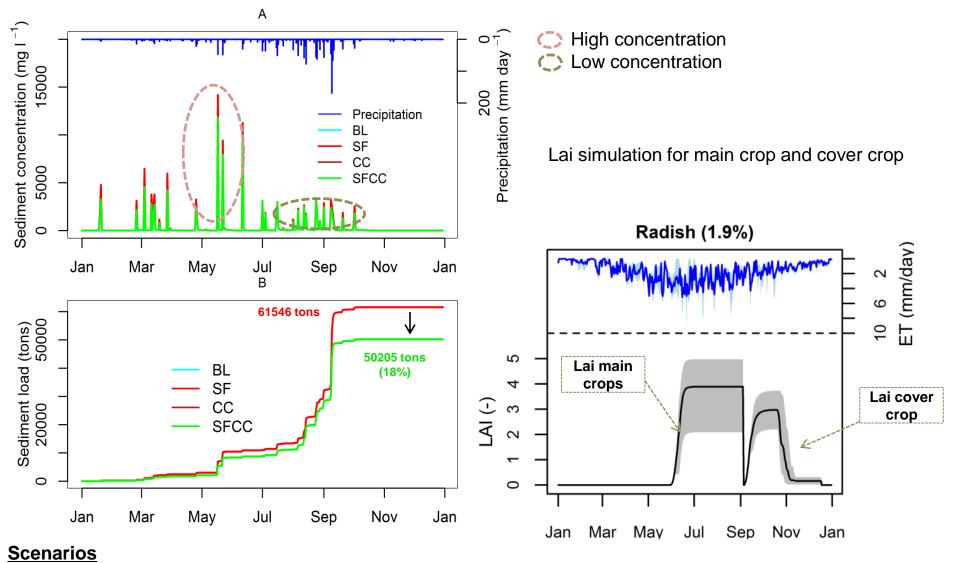
Effectiveness of BMPs scenarios to control Sediment loss


Total sediment loss from different crops

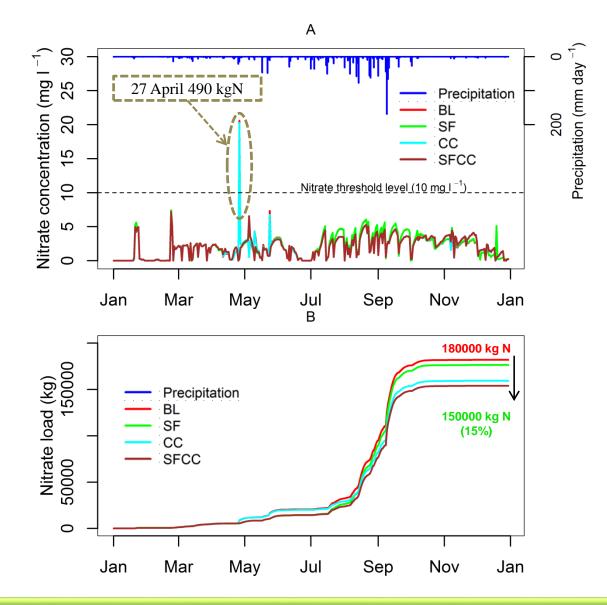
Effectiveness of BMPs scenarios to control Total nitrate loss


Total nitrate loss from different crops

Scenarios


BL= Baseline, SF=Split Fertilizer, CC=Cover Crop, SFCC=Split Fertilizer & Cover Crop

Effectiveness of BMPs scenarios to increase the Crop yield


1.Research issues 2. Study area 3. Objective 4. Methodology 5.Results 6.Conclusion

BMP impact on A) daily sed concentration and B) cumulative sed load

BL= Baseline, SF=Split Fertilizer, CC=Cover Crop, SFCC=Split Fertilizer & Cover Crop

BMP impact on A) daily nitrate concentration and B) cumulative nitrate load

✤BMPs related to cover crop reduces sediment and nitrate loss

BMP related to split fertilizer reduce nitrate loss.
Where as no impact on reduction of sediment loss and crop yield

The combination of BMPs showed a synergic effect on reduction sediment and nitrate loss while increasing crop yields.

The soybean showed only small responses to the applied BMP scenarios

The effectiveness of the BMPs in reducing total catchment loads is limited

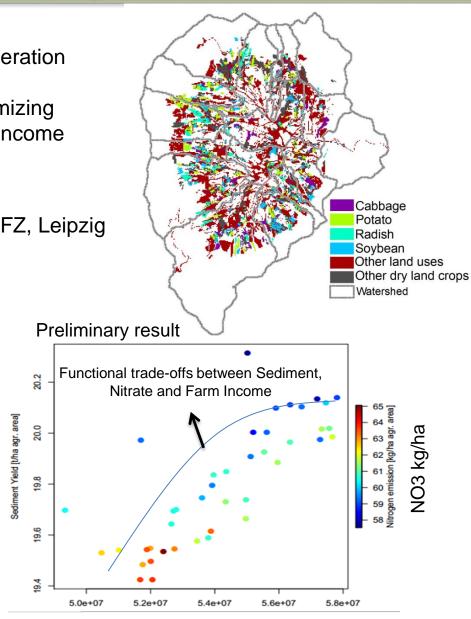
✤BMP to minor crops and other land use types should be considered to reduce water quality deterioration for catchment wide management plans.

Further study

Sediment – ton/ha

Reallocation of land use and management operation

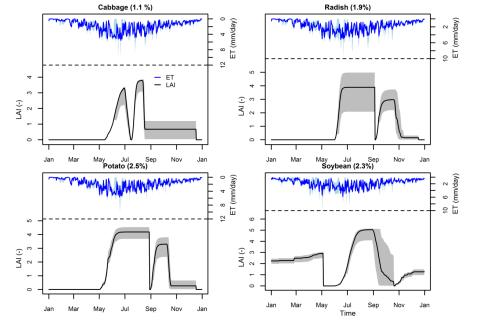
To determine pareto-optimal solution for minimizing environmental impact while maximizing farm income


Coupling

SWAT and optimization algorithm (NSGA-ii) UFZ, Leipzig

BMPs

- Split fertilization
- Cover crop
- Reduced fertilizer application
- •Filter strips


Total BMPs combination=144 Reallocated to 381 dryland agri HRU

Farm Income (won/ha)

"Thank You,,

Ganga Ram Maharjan (Ganga-Ram.Maharjan@uni-bayreuth.de) Department of Soil Physics, University of Bayreuth

0

Jan Mar

May Jul

Time

Sep Nov Jan

0

Jan Mar

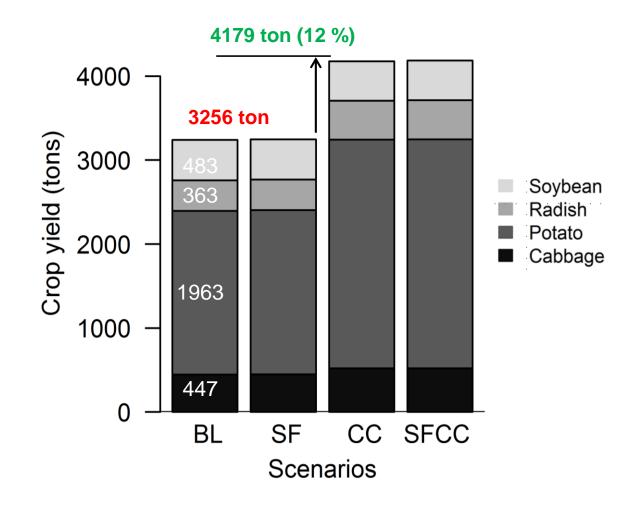
May Jul Sep Nov Jan

Baseline management operation

						Fertilizer	Fertilizer*	Planting	Harves
	Cabbage (1.1 %)	Radish (1.9%)	Crop	Tillage date	Tillage type	date	amount	date	t date
				6-May	Rotary hoe				
		L 4 Ministration (1997)	Cabbage		Furrow out	11-May	360	15-May	15-Jul
	10 6 2 ET (mm/day)		1(10-May	cultivator				
4 -	— ET - LAI			1-Apr	Rotary hoe				20
LAI (-) 1 2 3 1 1 1			Potato 12-4		Furrow out	17-Apr	330	29-Apr	29-
				12-Apr	cultivator				Aug
	· /// []			25-May	Rotary hoe				
0 -			Radish		Furrow out	27-Apr	490	1-Jun	5-Sep
	Jan Mar May Jul Sep Nov Jan Potato (2.5%)	Jan Mar May Jul Sep Nov Jan Soybean (2.3%)		30-May	cultivator				
	E & gg	[−]		10-May	Rotary hoe				
		E 20	Soybean		Furrow out	25-May	345	29-May	20-Oct
- 2	- م ^{ت ت} ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	+ ¢ ш		15-May	cultivator				
4 -			*Mineral f	fertilizer in kg	; ha ⁻¹				
- 1 - 3 - 3									
- · ·									

		BL				
Crop types	Area (ha)	(ton/ha)	SF	CC	SFCC	
Cabbage	69.84	47.9	47.9(0%)	9.2(-81%)	9.5(-80%)	
Potato	155.79	53.0	53.1(0%)	18.9(-64%)	18.9(-64%)	
Radish	121.23	52.4	52.7(0%)	24.9(-52%)	25.1(-52%)	
Soybean	141.93	35.5	35.6(0%)	28.3(-20%)	28.4(-20%)	
*Average	488.79	47.1	47.2(0%)	21.7(-54%)	21.9(-54%)	
**Catchment average	6273.9	10.2	10.2(0%)	8.2(-19%)	8.2(-19%)	

*Sediment calculated at field level is due to weighted mean for major dry land crops: cabbage, potato, radish and soybean, **Sediment simulated at catchment level is weighted mean for all land use type within the entire catchment

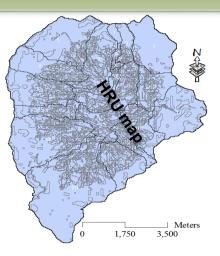

Crop types	Area (ha)	BL(Kg/ha)	SF(Kg/ha)	CC(Kg/ha)	SFCC(Kg/ha)
Cabbage	69.84	232	213(-8%)	193(-17%)	181(-22%)
Potato	155.79	193	172(-11%)	132(-31%)	109(-43%)
Radish	121.23	315	275(-13%)	267(-15%)	228(-27%)
Soybean	141.93	95	96(1%)	93(-2%)	92(-3%)
*Average	488.79	200	181(-9%)	163(-18%)	144(-28%)
**Catchment average	6273.9	39	38(-4%)	36(-7%)	35(-11%)

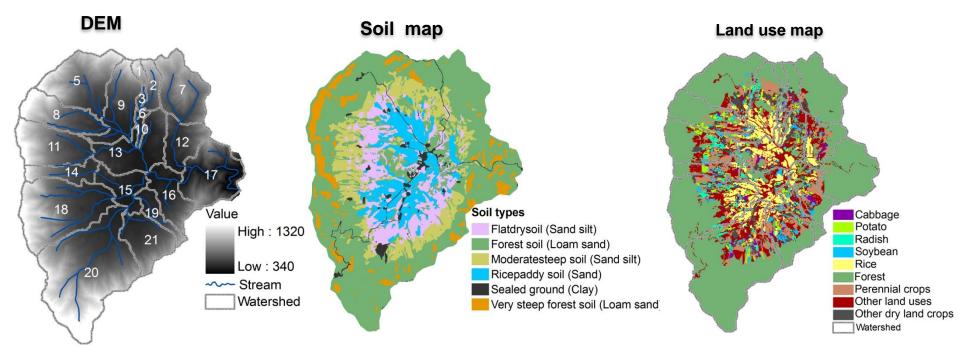
*Total nitrate calculated as average is due to weighted mean for major dry land crops: cabbage, potato, radish and soybean, **Total nitrate simulated at catchment level is weighted mean for all land use type within the whole study catchment

Crop type	Area (ha)	BL	SF	CC	SFCC
Cabbage	69.84	6.4	6.4(0%)	7.5(+17%)	7.5(+17%)
Potato	155.79	12.6	12.5(0%)	17.5(+39%)	17.5(+39%)
Radish	121.23	3.0	3.0(0%)	3.8(+27%)	3.8(+27%)
Soybean	141.93	3.4	3.4(0%)	3.3(-1%)	3.3(-1%)
*Average	488.79	6.6	6.6(0%)	8.6(+29%)	8.6(+29%)
**Catchment average	6273.9	1.7	1.7(0%)	1.9(+12%)	1.9(+12%)

*Crop yield calculate at field level is due to weighted mean for major dry land crops: cabbage, potato, radish and soybean, **Crop yield simulated at catchment level is weighted mean for all land use type within the whole study catchment

Total crop yield from different crops


Scenarios


BL= Baseline, SF=Split Fertilizer, CC=Cover Crop, SFCC=Split Fertilizer & Cover Crop

1.Research issues 2. Study area 3. Objective 4. Methodology 5. Results 6.Conclusion

Model setup (In put maps)

- Study area: Haean catchment, South Korea
- Total number of subbasin: 21
- Number of HRU formation: 792
- Simulation period : 2007-2011 (3 year warmup)

