The role of daily precipitation interpolation for the SWAT model performance across different spatial and temporal scales

MATEUSZ SZCZEŚNIAK MIKOŁAJ PINIEWSKI TOMASZ BEREZOWSKI

WARSAW UNIVERSITY OF LIFE SCIENCES WULS-SGGW

Default SWAT method

- Based on the Nearest Neighbour
- For each subbasin the amount of precipitation is taken from the nearest station
- Missing values replaced by SWAT built-in Weather Generator (WXGEN)

Objectives

 Do selected spatial interpolation techniques can improve the performance of the SWAT model in predicting flows in differrent spatial and temporal scales?

Case studies

- Case one: 11 meso-scale (119 to 3935 km²) sub-catchments lying in the Sulejów reservoir catchment – finished and published*
- Case two: 80 catchments (500 to 3000 km²) Vistula and Odra Basins ongoing study

* Szcześniak, M., & Piniewski, M. (2015). Improvement of Hydrological Simulations by Applying Daily Precipitation Interpolation Schemes in Meso-Scale Catchments. *Water*, 7(2), 747-779.

Sulejów reservoir catchment

- Part of the Pilica River catchment, located in the central Poland
- Total area 4,928 km²

Meteo inputs

- 49 stations, mainly precipitation
- 30 years of daily data

Used methods of spatial interpolation

- Aside of the default SWAT method (Def), three methods were used:
 - Thiessen Polygons (TP)
 - Inverse Distance Weighted (IDW)
 - Ordinary Kriging (OK)
- SWAT-CUP SUFI-2 algorithm was used as a tool for evaluation of the results

SUFI-2 "calibration" parameters

Name	Lower limit	Upper limit	Definition
ESCO.hru ²	0.7	1	Soil evaporation compensation factor
EPCO.hru ²	0	1	Plant uptake compensation factor
SOL_Z().sol ¹	-0.4	0.4	Depth from soil surface to the bottom of layer
SOL_AWC().sol ¹	-0.4	0.4	Available water capacity of the soil layer
SOL_BD().sol ¹	-0.4	0.4	Moist bulk density
SOL_K().sol ¹	-0.9	2	Saturated hydraulic conductivity
HRU_SLP.hru ¹	-0.3	0.3	Average slope steepness
ALPHA_BF.gw ²	-0.9	2	Baseflow alpha factor
GW_DELAY.gw ²	50	400	Groundwater delay time
GWQMN.gw ²	0	1000	Threshold depth of water in the shallow aquifer required for return flow to occur
GW_REVAP.gw ²	0.02	0.2	Groundwater "revap" coefficient
RCHRG_DP.gw ²	0	0.3	Deep aquifer percolation fraction
CN2.mgt ¹	-0.15	0.15	Initial SCS runoff curve nr for moisture condition II
SURLAG.bsn ²	0.3	3	Surface runoff lag coefficient
SLSUBBSN.hru ¹	-0.3	0.3	Average slope length (m)
CH_N2.rte ²	0.01	0.1	Manning's "n" value for the main channel
CH_N1.sub ²	0.01	0.1	Manning's "n" value for the tributary channel (-)
SMTMP.bsn ²	-2	2	Snow melt base temperature
TIMP.bsn ²	0	1	Snow pack temperature lag factor
SNOCOVMX.bsn ²	0	40	Minimum snow water content that corresponds to 100% snow cover

Note: 1 parameter multiplied by 1+r, where r is a number between lower and upper limits, 2 parameter replaced by the new value from the range.

Box plots of selected objective functions across all 11 flow gauging stations for different interpolation methods (Def – Default version, TP – Thiessen Polygons, IDW – Inverse Distance Weighted, OK – Ordinary Kriging)

interpolation methods (Def – Default version, TP – Thiessen Polygons, IDW – Inverse Distance Weighted, OK – Ordinary Kriging) and different objective function / temporal aggregation combinations (A – NSE_d , B - bR_d^2 , C - NSE_m , D - bR_m^2).

IDW

ID₩

ок

οк

-0.15

-10

-5

0

5

Mean PCP difference

10

15

Box plots of percent changes in RMSE across all 11 flow gauging stations for different interpolation methods (Def – Default version, TP – Thiessen Polygons, IDW – Inverse Distance Weighted, OK – Ordinary Kriging) and different objective function / temporal aggregation combinations (A – NSE_d , B, - bR_d^2 , C - NSE_m , D - bR_m^2).

Scatter plots of changes in different obbjective functions and various catchment descriptors for relationships with significant correlation (at significance level p = 0.05)

20

-0.15

0.06

0.07

0.08

0.09 0.10

Mean KD

0.11 0.12

Conclusions from Sulejów Case

- the most complex OK method outperformed other methods in terms of NSE, whereas OK, IDW and TP outperformed Def in terms of bR², regardless of temporal aggregation
- The difference between TP, IDW, OK and Def was spatially variable. Part of this variability was attributed to catchment properties.
- Spatial interpolation can improve the model simulations however various methods should be tested as the results tend to be catchment-specific.

Vistula and Odra Basins

- Part of the ongoing CHASE-PL project
- Vistula River basin area $194 \cdot 10^3 \text{ km}^2$
- Odra River basin area $119 \cdot 10^3 \text{ km}^2$
- Vistula the 2nd largest river basin in EU, Odra the 5th

Development of gridded temperature and precipitation datasets for modelling - overview

Item	Minimum and maximum temperature	Precipitation			
Domain	Poland + Vistula and Odra basins				
Data sources	 IMGW-PIB – Polish stations DWD - German and Czech stations ECAD, NOAA-NCDC – Slovak, Ukrainian and Belarusian stations 				
Preprocessing	Quality assessment	Quality assessment Richter correction for precipitation undercatch			
Interpolation method	Kriging with elevation as external drift	Combination of Universal Kriging and Indicator Kriging (for wet day probability estimation)			
Library	R gstat				
Time frame	1951-2013				
Resolution	5 km grid in the projected coordinate system PUWG1992				
Output format	.tiff files (one file per variable per day)				
Cross validation	All stations, for each day. Both temporal and spatial scale				
SWAT input	Aggregation at subbasin level				

Temperature and precipitation stations network

Annual variability of available data

Cross validation results: standardized RMSE

Precipitation – daily RMSEsd

- Precipitation 700 ,00^{00,000} 600 Number of precipitation stations 0 000 000000 500 00 00000 0000000 400 0 300 00 0 1950 1960 1970 1980 1990 2000 2010 Year
- Range: 300-700

2. 1950

1960

1970

1980

Year

1990

2000

2010

 Median range 0.7-0.8, with more than 85% of RMSE values not exceeding one standard deviation

- Negative correlation with the numer of available stations
- Errors depend on the density of the observation network

Catchments used in study

Mean yearly precipitation, years 1989-2000

Results

Box plot of KGE objective function across all 80 flow gauging stations for Default method – Def and Universal Kriging

Box plot of KGE objective function across all flow gauging stations (except Lug-VVO) for Default method – Def and Universal Kriging

KGE objective function for whole Vistula and Odra catchments

Gauge	KGE Default	KGE Kriging
Vistula outlet	0.71	0.76
Odra outlet	0.78	0.76

Scatter plots of KGE and Kernel Density

Conclusions from Vistula and Odra case

• Further investigation of the used interpolation method is needed