Modeling Biogeochemical Processes with APEX

R.C. Izaurralde, C.D. Jones, J.R. Williams, and W.B. McGill

SWAT 2015 Conference Pula, Sardinia, Italy 24-26 June 2015

Objectives and Background

> Objectives

- To review development and testing of coupled carbon-nitrogen cycling processes in EPIC and its incorporation into APEX
- To present initial comparisons between EPIC and APEX with regards to crop yield and selected biogeochemical processes
- Biogeochemical cycles: the pathway of elements or molecules through biotic and abiotic compartments of Earth
 - ✓ Water
 - ✓ Carbon
 - ✓ Nitrogen
 - ✓ Phosphorus
 - ✓ Sulfur

Altered biogeochemical cycles

Coupled C & N model in EPIC and APEX

Izaurralde et al. (2006) Ecol. Modell. 192:362-384.

EPIC-based approaches to describe soil organic matter dynamics

- Leaching of organic material based on sorption mechanisms and soil water content
- Surface litter fraction in EPIC has a Slow compartment in addition to Metabolic and Structural Litters
- Lignin concentration in EPIC is modeled as a sigmoid function of plant age
- Soil bulk density and soil layer depth change annually as a function of soil organic matter content

Izaurralde et al. (2006) Ecol. Modell. 192:362-384.

Testing soil C and N modules in EPIC with long-term data

- Numerous long-term experiments worldwide used to test EPIC
 - Crop rotations
 - ≻ Tillage
 - N fertilization
 - Landscape effects
 - Erosion / sedimentation
 - Land use change
 - Woody encroachment
 - Prairie restoration
- Most experiments included interactive effects
- Soil C change at depth

Izaurralde et al. (2012) In: Managing Agricultural Greenhouse Gases, p. 409-429.

Simulating soil management impacts on corn yields, runoff, sediment yield, and soil C with APEX

Wang et al. (2008). Soil Till. Res. 101:78-88.

Deep Loess Res. Stn. Watersheds SW Iowa Cumulative runoff and sediment yield

Corn yield and soil organic carbon

	Year	W2			W3		
		Observed (Mg ha ⁻¹)	Predicted (Mg ha ⁻¹)	% Error	Observed (Mg ha ⁻¹)	Predicted (Mg ha ⁻¹)	% Error
Corn grain yield Soil organic carbon	1976–1995 1994	7.29 26.6ª	6.93 29.1	-4.9 9.2	7,59 34,7°	7.36 36.4	-3.0 5.0

Representation of Ecosystem Carbon in EPIC

Applying EPIC to study carbon cycling in agricultural systems

- Developed capability to calculate Net Ecosystem Carbon Balance in EPIC (and now extended to APEX)
 - Vertical C fluxes: NPP, R_h
 - Lateral fluxes: C_{erosion} (POC and DOC), C_{leaching} (DOC),
 - Carbon removals additions: manure, biochar, harvest, burning
- Carbon emissions due to practices (fertilizer, tillage, pesticides)

Schwalm at al. (2010) J. Geophys. Res. – Biogeosc.

Zhang at al. (2014) Sci. Total Environ.

1 cm = 92 km

Denitrification model in EPIC and APEX

Liquid Phase Transport (daily) (dissolved ions and gases)

- Runoff
- Subsurface flow
- Percolation

Izaurralde et al. (2012) In: Managing Agricultural Greenhouse Gases, p. 409-429.

Simulated vs. observed annual and seasonal N_2O flux (g N_2O -N ha⁻¹ d⁻¹) in a corn – soybean – wheat rotation at KBS

GREAT LAK

BIOENERG

Simulated annual potential evapotranspiration (PET), evapotranspiration (ET), transpiration (EP), runoff (Q), percolation (PRK), and ending root-zone soil water (RZSW); unit: mm

Yield (Mg ha⁻¹) and yield stresses (days) of soybean and corn simulated with EPIC1102 and APEX0806

Simulated vs. observed annual and seasonal N_2O flux (g N_2O -N ha⁻¹ d⁻¹) in a corn – soybean – wheat rotation at KBS

How does APEX simulate crop yield, N mineralization, and N losses as affected by N rate?

New water, C, and N features in EPIC and APEX

- Algorithms to describe C/N relationships of microbial biomass based on the Phoenix model (McGill et al. 1981)
- Soil organic matter decomposition adjusted for anaerobic conditions when redox reactions occur (e.g. denitrification, methanogenesis)
- Allow microbial activity down to temperatures of -8 °C by accounting for liquid water and ice
- > Nitrification equations enhanced to account for pH effects on NO_2^- accumulation
- \blacktriangleright Stoichiometric treatment of O₂ uptake and heterotrophic CO₂ release by soils
- New percolation subroutines to slow down emptying of pores in upper layers (slug approach)

EPIC-APEX approach to describe Soil Organic Matter decomposition

Summary

- Based on EPIC algorithms, a new version of the APEX model was developed with capabilities to model biogeochemical processes in terrestrial ecosystems
- Favorable comparisons can be obtained with EPIC and APEX for selected outputs (e.g. yield, water, carbon, nitrogen) but further work is needed to ensure full comparability
- Testing and improvement of APEX will continue with particular attention to:
 - Biogeochemical processes in wetlands and rice paddies
 - Transport and deposition of eroded carbon and nitrogen across fields