Biofuel impacts on ecosystem services, biodiversity and human well-being – *the contribution of SWAT modelling to integrated land Use governance*

Lorenzo Di Lucia, Nicole Kalas, Jeremy Woods Imperial College London SWAT conference, 24-26 June 2015, Pula

Imperial College London Ecosystem services, biodiversity and human wellbeing

Ecosystem services are benefits people obtain from ecosystems:

- *Provisioning* (food, fuels, fibre, timber, etc), regulating (flood or pest control, climate regulation),
- Supporting (services necessary for the delivery of other services, such as nutrient cycling)
- *Biodiversity* own category or supporting
- Cultural

Landscapes provide services which benefit humans

Governance of land (scapes)

- Land use and management influences system processes and structure and thus the provision of services
- Trade-offs between ecosystem services
- How should we deal with trade-offs?
- Risk of sub-optimal allocation of land and societal conflict

Biofuels

New demands of land for the production of biomass for biofuel can:

- + reduce transport GHG emissions, improve food security, provide development opportunities in rural areas
- compete with food production, and contribute to climate change and biodiversity loss

ILAMS project

Integrated Land Management Solutions for a Sustainable Bioeconomy

Overall aim: provide tools to promote wider agreement on the role of bioenergy technologies for environmental quality and human well-being

Decision making support tool:

- Landscape assessment of the impacts of biofuel systems on ecosystem services and human wellbeing
- Simulate alternative scenarios of land use & management

ILAMS - Case studies

1. Biodiesel from soya bean – Mato Grosso, Brazil

 Ethanol from sweet sorghum – Texas, US

 Ethanol from giant reed (Arundo Donax) – Sardinia, Italy

Sardinian case study

Ethanol production unit:

- Biochemtex Technology: second generation ethanol
- 400 kt/y biomass feedstock - 160 kt/y imported wheat straw, and 240 kt/y GR (210 kt/y cultivated)
- Output: 80 kt/y ethanol and 240 kt/y wet lignin

Why Sardinia?

ILAMS project

Stakeholders' engagement

Aim: allow stakeholders to articulate their preferences in relation to biofuel, ecosystem services and human well-being

- 1. Assessment of stakeholders:
- Key concerns
- Alternative scenarios for land use/management
- 2. Simulation of scenarios with stakeholders
- Workshop
- Facilitate discussions

Stakeholders engagement in Sardinia

Biofuel controversial issue

Wide range of stakeholders

REGIONE AUTÒNOMA DE SARDIGNA REGIONE AUTONOMA DELLA SARDEGNA

Results of stakeholders assessment

Key concerns

- Water availability
- Food security and production of (high quality) food
- Employment
- Biodiversity

Alternative scenarios

- Irrigation using recycled water WWT
- Use of polluted land (mines/industrial sites)
- Use of marginal land (not cultivated in last 5 years)
- Introduction/expansion of corridors and improved protection of preservation areas

ILAMS project

Integrated model

- Cover all stakeholders' key concerns
- Simulate current status and alternative scenarios of land use/management
- Landscape approach
- > Use existing models

Sub-models

1. Biophysical processes module

- SWAT water availability, crop production, carbon storage
- InVEST habitat quality & MatrixGreen – biodiversity
- InVEST carbon carbon storage

2. GHG emissions module

- LCA (excel) GHG emission of biofuel
- Inventory (excel) GHG of transport and el/heat in the landscape

3. Human well-being module

- Mass balance model (excel) food/feed/energy security
- Employment generation (ArcGIS)
- Revenues (ArcGIS) farm revenues

1. SWAT

Outputs of interest:

- Water availability
- Crop production
- Carbon storage (biomass above & below ground and DOM)

Data:

- DEM 10m Sardinia Region
- LULC CORINE 2011
- Soil European Soil Database
- Weather CFSR
- Digitalized river stream network - Sardinia Region

SWAT - Watershed delineation

Conditions:

- 6000 ha
- Potentially irrigated
- 75km max distance from production unit
- Outside protected
 areas

Basin: 550 000 ha 108 subbasins 851 HRS

Land use: 10% forest 12% rangeland 60% agriculture

SWAT – ongoing work

- More accurate LULC map
- Land management data
- Data for reservoirs and WWT
- Run and calibrate model
- Prepare alternative scenarios

Polluted land

Abandoned land

1. InVEST – habitat quality

Habitat quality as an indicator of the status of biodiversity. Areas of high quality are generally better able to maintain biodiversity

Data

- LULC
- Threats (urban&industry, agriculture, roads)
- Habitat accessibility (parks & reserves)
- Habitat sensitivity (grasslands < forests < wetlands)

Habitat quality – preliminary results

Habitat quality map

- Quality of habitat
- Proximity to threats

Habitat degradation map

- Distance to threats
- Habitat sensitivity
- Habitat accessibility

1. MatrixGreen - connectivity

- It models connectivity and spatial distribution of habitats.
- Data: map of habitats
- Component based connectivity
- Outputs: map and total value of habitat connectivity

1. InVEST – carbon storage (modified)

Storage is the amount of carbon in an ecosystem at any given point in time Carbon stock as a function of land use/land cover

Data:

- LULC
- Carbon coefficients for each LULC class

1. Carbon storage

4 carbon pools:

- Above ground biomass
- Below ground biomass
- Dead Organic Matter
- Soil Carbon

Table of carbon pools

Carbon coefficients

(metric tons / hectare)

LULC	LULC_name	C_above	C_below	C_soil	C_dead
1	Forest	140	70	35	12
2	Coffee	65	40	25	6
3	Pasture/grass	15	35	30	4
4	Shrub/undergrowth	30	30	30	13
5	Open/urban	5	5	15	2

2. GHG emissions – biofuel LCA

- Impact of the project on GHG emissions of the area
- Production of biofuels generates GHG credits

Functional Unit	Global Warming Potential/GWP100		
	(kgCO ₂ -eq)		
Per 1 ton of bioethanol	4.5		
Per 1 ton _{dry} of Arundo donax	0.9		
Per 1 hectare	22.6		
Per 1 year (total emissions)	181178		
GHG savings from petrol	99.3%		

- Incl. cultivation, harvest, transport and transformation
- Exclude LUC

3. Human well-being - Security

- Security as physical availability of water, food, feed and energy
- Mass balance for the watershed
- Excel files

Water

Availability from SWAT results

3. Human well-being - Security

Food security

 Supply: crop production (SWAT) + animal production data (milk & meat)

 Consumption per family/person: food statistics for the region

3. Human well-being - Security

Feed security

 Supply: feed production from pasture, rangeland, crops (SWAT)

 Consumption: number of animals (cows, goats/sheep and pigs) and intake coefficients

3. Human well-being - Security

Energy security

 Supply: energy provided from resources within watershed (coal, wind, solar & biomass)

Employment generation

Employment

- Agricultural employment coefficients
- Agricultural employment GR for cultivation, harvest, transport (Beta Renewables data for subcontractor)

Allegato J - Tabella regionale del fabbisogno di manodopera in agricoltura

 \bigcirc

A) Fabbisogno di manodopera per coltura

Coltivazioni erbacee ed orticole	h/uomo per ha	
Altre piante officinali	880	
Fragola in tunnel	3360	
Anguria	468	
Melone	576	
Fiori in pieno campo	4920	
Fiori in serra	9200	

ILAMS project

User interface

- Allow users to simulate scenarios
- Simple, transparent and responsive to end-user needs
- Information on the spatial distribution of ecosystem services
- Understanding of tradeoffs and win-win opportunities

OVERVIEW | LIFESTYLE | TECHNOLOGY AND FUELS | LAND AND FOOD | CLIMATE | COSTS

Ar | Ba | 中文 | En | Fr | Hi | Po | Ru | Sj

Cumulative CO2

he Global Calculator v23

Example The Global Calculator

Conclusions

- Modelling is a tool that can be used to build consensus about biofuels, minimizing conflicts and improving project outcomes
- It requires **knowledge integration** biophysical, technical and social aspects
- SWAT can be used with other models to provide a comprehensive understanding of biofuel impacts at landscape level

Thank you for the attention!