AN AUTOMATED PROCEDURE FOR SWATLUD TO BE APPLIED AT THE CATCHMENT SCALE.
 G-M@D

Gregory ESPITALIER NOEL, Xiaoling SUN, Sabine SAUVAGE, José-Miguel SANCHEZ-PEREZ

Outlines

1. The Landscape Units Darcy model (LUD)
2. The LUD implementation in SWAT
3. The LUD model validation

G-M0D

The Landscape Units Darcy (LUD) mode

What is an LUD?
What are the model parameters?
How to find values for these parameters?

G-MCD

SWAT model

Reminder: HRU

Flow direction

Surface water to Groundwater is not simulated in SWAT

G-M0D

Landscape Unit model (from Volk et al. 2007)

- River to alluvial aquifer water exchanges,
- Flooding water infiltrating the LUs,

```
G-MOD
```


Landscape Unit model

- River to alluvial aquifer water exchanges,
- Flooding water infiltrating the LUs,

G-MOD

LUDs = subbasin containing HRUs

Landscape Unit model

- River to alluvial aquifer water exchanges,
- Flooding water infiltrating the LUs,
- At the alluvial plain scale.

G-MQD

8

Landscape Unit model

- River to alluvial aquifer water exchanges,
- Flooding water infiltrating the Lus,
- At the floodplain scale.

G-M0D

LUs = subbasins containing HRUs

Contained
 HRUs

Landscape Unit model

- River to alluvial aquifer water exchanges,
- Flooding water infiltrating the Lus,
- At the floodplain scale.

G-M(0)

Landscape Units geometry

LUD geometric parameters

Parameter	Unit	Description	Hypothesis
l	meters	LUD's length along the river	= channel's length
S_para	m / m	LUD's slope parallel to the channel	= channel's slope
S_perp	m / m	LUD's slope perpendicular to the channel	- LUD1 = channel's slope $\times 2$ - LUD2 $=$ channel's slope $\times 5$ - LUD3 $=$ channel's slope $\times 10$
A	m^{2}	LUD's surface	- LUDI $=10 \%$ alluvial surface - LUD2 $=20 \%$ alluvial surface - LUD3 $=70 \%$ alluvial surface
L	meters	LUD's width	- A / I
h	meters	LUD's mean height to the surface	Channel depth + (L x S_perp) / 2

G-MCD

River / Alluvial aquifer interface

Darcy's equation (1856):

$$
Q=K \times A \times \frac{\Delta H}{D}
$$

Parameter	Unit	Description	Value
K	m. d^{-1}	Hydraulic conductivity	$\begin{array}{rlrl} \cdot & \text { LUD1 } & =300 \\ \cdot & & \text { LUD2 } & =200 \\ \cdot & & \text { LUD3 } & =100 \end{array}$
A	m^{2}	Area of interface	h x l
D	m	Distance between the middle of two consecutive reservoirs	$\mathrm{L}_{\text {LUD_i }} / 2+\mathrm{L}_{\text {LUD_k }} / 2$
ΔH	m	Difference of water levels	$g w_{\text {height }{ }^{\text {i }}}-\mathrm{g} \mathrm{w}_{\text {height } _k}$

G-MCD

River / Alluvial aquifer processes

Denitrification:

Nitrate consume rate:
$R_{N O 3}=-0.8\left(\rho \frac{1-\varphi}{\varphi} \cdot k_{P O C}[P O C] \cdot \frac{10^{6}}{M_{C}}+k_{D O C}[D O C]\right) \cdot \frac{[\mathrm{NO} 3]}{k_{\text {NO3 }}+[\mathrm{NOS}]}$ DOC consume rate: $\quad R_{D O C}=-k_{D O C}[D O C]$

POC consume rate: $\quad R_{P O C}=-k_{P O C}[P O C]$

Parameters	Units	Description
φ	-	Sediment porosity
ρ	$\mathrm{kg} \cdot \mathrm{dm}^{-3}$	Dry sediment density
$\boldsymbol{k}_{\text {POC }}$	d^{-1}	Mineralisation rate constant of POC
$\boldsymbol{k}_{\text {DOC }}$	d^{-1}	Mineralisation rate constant of DOC
$\boldsymbol{k}_{\text {NO3 }}$	μM	Half-saturation for nitrate limitation

G-M(0)

The LUD implementation in SWAT

Where do changes occurs in the source code? How to automatically construct LUDs? How to populate LUDs with HRUs?

G-M(0)

LUD implementation in SWAT

Several subroutines specific to LUD model:

- routeunit :
- Groundwater and nitrate sum from HRUs to LUDs,
- routels :
- No groundwater flow between landscape units (now done in route_ru).

Several subroutines added:

- route_ru:
- DOC / nitrate masses and concentrations in LUD groundwater,
- Nitrate from soil to groundwater with infiltrated flood water,
- Darcy equation,
- Nitrate and DOC exchanges between LUDs.
- rtday_ru:
- flooding,
- Infiltration.
- rchinit_ru,
- rtout_ru,
- gwmod_ru : groundwater volume and height in each HRU from correponding LUD (without flood water),
- gw_no3_ru: nitrate content in groundwater for each HRU,
- denit_gw : denitrification in each LUD.

G-MOD

SWAT LUD: project creation

generate_landscape_unit.f90

Will be implemented in ARCSWAT

G-MCD

SWAT LUD: file structure

G-M0D

17
 LUD approach validation

How well does the model works?

G-MCD
 First LUD results

For more (denitrification, etc) see Xiaoling SUN presentation this afternoon!

Conclusions \& Perspectives

\square Model validated at:

- Meander scale (Monbequi)
\square Alluvial plain scale
- Subbasin scale
\square Against:
\square Water levels
- nitrate
\square Create LUD project from ArcSWAT

\square Include river sinuosity in hydraulic conductivity parameter
\square Calculate LUD's area from flooded areas
\square Calculate mean depth from aquifer geometry

G-MOD

SWAT LUD: alluvial HRUs redistribution

LUD

implementation

G-MCD

Modifications (CYAN)

 to the commandsubroutine (executing the figfile).

The diagram shows the execution flow of the subroutine from top to bottom.

LUD

implementation

Modifications (CYAN and BOLD) to the
subbasin subroutine.
The diagram shows the execution flow of the subroutine from top to bottom.

LUD

implementation

G-M©D

implementation

