

Diagnostic tools to understand hydrological processes in the SWAT model

Björn Guse, Matthias Pfannerstill, Michael Strauch, Dominik Reusser, Martin Volk, Nicola Fohrer

C | A | U

Abteilung Hydrologie und Wasserwirtschaft

Processes in models and catchments

- Hydrological processes are controlled in the SWAT model with different parameters
- These parameters are adapted to the conditions in the study catchment
- To obtain realistic process representations, diagnostic model analyses are helpful to investigate the parameter and process dynamic

3 diagnostic tools for process understanding in SWAT

Study sites: Treene and Saale

precipitation [mm]

SWAT – selected processes and parameters

Hydrological processes

are aimed to be reproduced accurately

Model parameters

Model parameters

are optimised with

Performance measures

Hydrological consistency

Parameters should be set to represent the hydrological processes

Process

Performance measures should be used to represent processes

Model parameters

Parameter identification

Performance measures

Sequence of diagnostics

- Step 1: Temporal sensitivity analyses of parameters
- Step 2: Calibration for all flow conditions using FDC
 Select model runs that behave well in all segments
 of the FDC
- Step 3: Monthly pattern of parameter dominances for the different discharge magnitudes

1. Temporal parameter sensitivity analysis

Method:

- Parameter sensitivity analysis for each day
- Temporal dynamic of parameter sensitivity analysis (TEDPAS)
- Global sensitivity analysis based on factor prioritization using the FAST algorithm
- FAST captures the whole parameter space

Result:

- Shows in which phase of the year a parameter is dominant
- Daily hierarchy of dominant model parameters

Temporal parameter sensitivity analysis

- CN2 dominant only for short phases
- At least one groundwater parameter is always dominant
- high temporal variations between the groundwater parameters

Temporal parameter sensitivity analysis

Parameters should be set to represent the hydrological processes

SWAT model parameters

3

Performance measures should be used to represent processes

2

Parameter identification

Performance measures

model calibration for different flow conditions

Method:

- Stepwise intersection of good model runs for five segments of the flow duration curve (FDC)
- Evaluation with separate RSR for each segment

Result:

 Calibrated SWAT model reproduce all discharge magnitudes in a similar model performance

~

Smart model calibration

Typical patterns of temporal parameter dynamic

Method:

 Monthly averaging of daily parameter sensitivities separately for the five FDC segments

Result:

 Monthly pattern of parameter dominances for the different discharge magnitudes

_

-19-

Typical patterns of temporal parameter dynamic

Typical patterns of temporal parameter dynamic

Hydrological processes

SWAT model parameters

Parameter identification

Performance measures

Summarising process control

Spring

Summer

Spring

Winter

Autumn

Summer

Autumn

Winter

Concluding remarks

- Combination of temporal dynamic of dominant model parameters and corresponding processes with different discharge conditions leads to a typical pattern of the hydrological behaviour in the two study catchments
- The three diagnostic tools lead to a better understanding of the process representation in the SWAT model

References:

- Guse, B.; Reusser, D.E.; Fohrer, N. (2014): How to improve the representation of hydrological processes, Hydrol. Process., 28, 2651–2670.
- Pfannerstill, M.; Guse, B.; Fohrer, N.(2014a): A multi-storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments, Hydrol. Process., 28, 5599–5612.
- Pfannerstill, M.; Guse, B.; Fohrer, N. (2014b): Smart low flow signature metrics for an improved overall performance evaluation of hydrological models, J. Hydrol., 510, 447–458.
- Reusser, D.E.; Buytaert, W.; Zehe, E. (2011): Temporal dynamics of model parameter sensitivity for computationally expensive models with FAST (Fourier Amplitude Sensitivity Test), Water Resour. Res., 47(7), doi:10.1029/2010WR009.

Contact: Björn Guse (bguse@hydrology.uni-kiel.de)

Matthias Pfannerstill (mpfannerstill@hydrology.uni-kiel.de)

SWAT 3S

Modified SWAT-Version with two active shallow aquifers and one inactive deep aquifer

