

NORA PANDJAITAN MAULANA RAU MACHMUD RAIMADOYA

INTERNATIONAL SWAT CONFERENCE 2015:

UTILIZATION OF SOIL AND WATER ASSESSMENT TOOL IN INDONESIA

Santa Margherita di Pula (CA), Sardinia, Italy June 24-26, 2015

Background

Hydrological model is a simple presentation of a complex hydrologic system \rightarrow climate, soil, land use and land management \rightarrow process in a watershed

SWAT model :

► to predict the effect of land management on water yield, sediment, pesticides and chemical of agricultural products that enter the river or body of water in a watershed which complex with soil, land use and various management over a long time (Neitsch et al., 2005) →

determining a watershed management activities \rightarrow

Scenarios ← Statisfatory calibration and validation

SWAT modeling

The aim of this study

- to understand the process of calibration and uncertainty factors that affect the processes occurring in hydrological modeling
- to identify sensitive input parameters and calibration techniques according to Indonesian condition, especially West Java Province using SWAT Model

SWAT \rightarrow a lot of parameters

 \rightarrow determining the specific parameters which really affect the hydrology of a watershed

- a) the absolute sensitivity analysis in which the value of one parameter is vary while the other parameters remains constant
- b) the relative sensitivity analysis in which all parameters vary simultaneously

Calibration, Validation & Verification

CALIBRATION: model testing with known input

and output used to adjust or estimate factors

- VALIDATION: comparison of model results with an independent data set (without further adjustment).
- VERIFICATION: examination of the numerical technique in the computer code to ascertain that it truly represents the conceptual model and that there are no in here

Calibration/Validation Periods :

distinct time period

similar range of conditions

adequate time period to simulate conditions

Model Configuration

- Land use categories : land use types in watershed, existing and future land uses, management techniques employed, management questions
- Subwatersheds : location, physical characteristics/soils, gaging station locations, topographic features, management questions.
- Reaches : topographic features, stream morphology, crosssection data available

Calibration Issues :

- individual land use parameter determination
- location of gaging station data
- location of water quality monitoring information
- available information on stream systems

Calibration/Validation Procedures

- Hydrology
- Sediment
- Water quality : nitrogen, phosphorus, pesticides, DO, bacteria

Calibration/Validation Common Problems

- too little data
- small range of conditions : only small storms or storms during the spring etc
- prediction of future conditions which are outside the model conditions
- calibration/validation does not adequately test separate pieces of model
- adjusment of the wrong parameters
- calibration adjustments destroy physical representation of system by model

Key consideration in calibration : water balance , storm sequence

SCIENTIFIC JOURNAL-BASED SWAT RESEARCH IN INDONESIA

- As per June 2015, there are only 3 papers discussing about SWAT, where all of the applications are concentrated in the Java Island.
 - I. Prasena and Shrestha (2013): Indonesian Journal of Geography
 - 2. Othman and Sholichin (2008): International Association for Environmental Hydrology Vol. 16
 - 3. Ridwansyah et al (2014): International Journal of Science and Engineering Vol. 6

GEOGRAPHY

Prasena and Shrestha (2013): Indonesian Journal of Geography

- ArcSWAT 2009 was the interface that was used to perform runoff simulation in Bedog Sub Watershed, Jogjakarta, Indonesia.
- The most sensitive parameter is the Available Water Capacity (SOL_AWC).
- The parameters which were considered to be sensitive in runoff production are:
 - I. Available water capacity (SOL_AWC),
 - 2. Soil evaporation compensation factor (ESCO),
 - 3. Depth from soil surface to bottom of layer (SOL_Z).

Prasena and Shrestha (2013): Indonesian Journal of Geography

- Runoff generation was also found to be sensitive to groundwater parameters:
 - 1. Threshold depth of water in the shallow aquifer required for return flow to occur (GWQMN) in mm,
 - 2. Base flow alpha factor (ALPHA_BF) in days.
- The value of R² for the year 2001, 2006, and 2010 was 0.7, 0.57, 0.51 respectively.
- The value of Nash-Sutcliffe Coefficient of Efficiency (NSE) for the year 2001 and 2010 was 0.64 and 0.43 respectively.

Othman and Sholichin (2008): International Association for Environmental Hydrology Vol. 16

- AVSWAT was the interface that was used to assess the effect of fertilizer application rates on nutrient transport to the Sutami reservoir within Brantas River Basin in East Java, Indonesia.
- Stream-flow parameters calibration include:
 - I. CN2,
 - 2. ESCO and
 - 3. SOL_AWC

- The values of sediment parameters calibrated include:
 - I. USLE_C,
 - 2. USLE_P,
 - 3. SLSUBBBSN,
 - 4. SLOPE and
 - 5. SPEXP.
- Nutrient value parameters calibrated include:
 - I. PPERCO,
 - 2. PHOSKD,
 - 3. SOL-OrgP,
 - 4. SOL-OrgN and
 - 5. RS5.

JOURNAL OF ENVIRONMENTAL HYDROLOGY The Electronic Jectural of the International Association for Environmental Hydrology On the World Web Web at http://www.lagtoweb.com

Othman and Sholichin (2008): International Association for Environmental Hydrology Vol. 16

D					
Parameter	Model	Description	Model Range	Actual	
Name	Process			Value	
CN2	Flow	Curve number	$\pm 10\%$	-6	
ESCO	Flow	Soil evaporation compensation factor	0.00 t0 1.00	1	
SOL_AWC	Flow	Soil available water capacity	± 0.04	+0.02	
USLE_C	Sediment	Universal Soil Loss Equation C factor	0.0001 to 1	0.150	
USLE_P	Sediment	Universal Soil Loss Equation P factor	0.1 to 1.0	0.6	
SLSUBBSN	Sediment	Average slope length (m)	NA	-10%	
SLOPE	Sediment	Average slope steepness (m/m)	NA	-10%	
SPEXP	Sediment	Exponential factor channel sediment	1.0 to 1.5	1.0	
		routing			
PPERCO	Mineral P	Phosphorous percolation coefficient	10 to 17.5	10	
PHOSKD	Mineral P	Phosphorous soil partitioning	100 to 200	200	
		coefficient			
FRY_LY1	Nutrient	Fraction of fertilizer applied to top	0.0 to 1.0	0.2	
		10mm soil layer			
SOL_ORGP	Organic P	Initial organic P concentration in the	NA	0.2 mg/kg	
		upper soil layer			
SOL_ORG	Organic N	Initial organic N concentration in the	NA	0.2 mg/kg	
Ν		upper soil layer			
RS5	Total P	Settling rate organic P at 20 ^o C	0.001 to 0.1	0.1	

AVSWAT calibration parameters and their final values for the Sutami Reservoir

Othman and Sholichin (2008): International Association for Environmental Hydrology Vol. 16

• The resulting statistical goodness-of-fit was evaluated with the Nash-Sutcliffe coefficient, $R^2_{NS} = 0.32$ and the linear correlation was found to be $R^2 = 0.85$.

(a) Comparison between observed and simulated flow; (b) Linear correlation of observed and simulated flows

Ridwansyah et al (2014): International Journal of Science and Engineering Vol. 6

- ArcSWAT and SUFI2 was used to perform a comprehensive watershed modeling in predicting river flow in Cisadane Catchment Area, Indonesia.
- Using SUFI2, I2 parameters during the calibration were found to be more sensitive, where CN2 was considered the most sensitive among the others.
- The parameters include: CN2, ALPHA_BF, GW_DELAY, GWQMN, GW_REVAP, ESCO, CH_N2, CH_K2, ALPHA_BNK, SOL_AWC, SOL_K, and SOL_BD

Ridwansyah et al (2014): International Journal of Science and Engineering Vol. 6

The parameters below have given ranks for their sensitivity to the model calibration.

No	Parameter_Name	Fitted_Value	Min_value	Max_value
1	R_CN2.mgt	-0.14	-0.2	0.2
2	V_ALPHA_BF.gw	0.35	0	1
3	V_GW_DELAY.gw	32.5	10	60
4	V_GWQMN.gw	0.7	0	2
5	V_GW_REVAP.gw	0.01	0	0.2
6	V_ESCO.hru	0.89	0.8	1
7	V_CH_N2.rte	0.135	0	0.3
8	V_CH_K2.rte	111.25	5	130
9	V_ALPHA_BNK.rte	0.45	0	1
10	R_SOL_AWC().sol	0.17	0.2	0.4
11	R_SOL_K().sol	0.24	0.1	0.8
12	R_SOL_BD().sol	0.5	0.1	0.6

Fitted value, and minimum and maximum ranges of parameters in the SUFI-2 uncertainty techniques

Ridwansyah et al (2014): International Journal of Science and Engineering Vol. 6

The most sensitive parameters recorded after sensitivity analysis for daily calibration in SUFI-2 procedures is presented below:

Parameter Name	rank	t-Stat	P-Value
R_CN2.mgt	1	1.324272387	0.227013
V_ALPHA_BF.gw	2	0.232031793	0.823151
V_GW_DELAY.gw	3	2.051756529	0.079324
V_GWQMN.gw	4	0.585847879	0.576371
V_GW_REVAP.gw	5	1.236567016	0.256124
V_ESCO.hru	6	1.049884034	0.328661
V_CH_N2.rte	7	1.565833881	0.161369
V_CH_K2.rte	8	-6.67780619	0.000283
V_ALPHA_BNK.rte	9	2.618492264	0.034485
R_SOL_AWC().sol	10	-0.955975391	0.370926
R_SOL_K().sol	11	3.552908082	0.009307
R_SOL_BD().sol	12	1.84147118	0.108111

Parameter sensitivities for SUFI-2

CONCLUSION

- In the hydrology modeling, both the input parameters and the model is something that is not definite - each input reflect the condition of a watershed at a particular moment/time that cannot be compared to any other time.
- * Sensitive input parameters were vary and manual calibration is very helpful in understanding the process and uncertainty parameter in a model for small watershed scale.

THANK YOU