Improving Representation of Soil Characteristics and Hydrology Weather **Using Topographically Derived Initialization Processes** and Data Brokering Management Soils Landuse Zachary M. Easton¹, Amy Collick², Peter Kleinman², Global Elevation Andrew Sommerlot¹, Siri Jodha Kahlsa³, and Daniel Fuka¹ **Datasets**

¹Biological Systems Engineering, Virginia Tech; ²USDA-ARS;

³National Snow and Ice Data Center

Outline

- Introduction to Brokering and NSF's BCube
- Topography, Soils, and TopoSWAT
- VSA / Non-Hortonian Case
 - USDA WE-38, PA
- Extending VSA methods to Hortonian
 - Reisel, TX
- What does this imply for SWAT model development

EarthCube and **Open Data Sharing**

A community of communities

Accelerating Scientific Discovery

Credits: from top to bottom: NOAA Okeanos Explorer Program (CC BY-SA 2.0), NASA/Kathryn Hansen (CC BY 2.0), and Canyonlands National Park/Neal Herbert (CC BY-NC-SA 2.0).

What is Data Brokering? Science Discipline Interoperability

Two Complementary Approaches

- Standardization
 - Systems Federation
 - A group of people agreeing on a format
 - Controlled and mature environments
- Intermediation (i.e. System Brokering)
 - Complex data types supported
 - Allows rapidly evolving environments

Problems Brokering Fixes

- "Process" based modeling requires many disparate data source with different formats from different locations
- Sources are not necessarily consistent
- With many options, repeatability decreases
- More frequently watershed initialization is a result of derived datasets with source specific transformations and manipulations
- Derived datasets are rarely "Repeatable" from traditional literature methods sections.

Brokering Framework Principles

- A broker connects information resources by mediating interactions between those resources without requiring the maintainers of those resources to adapt new conventions or install software components
- User likewise need not understand and be able to manipulate all data formats

USGS ASTGTM002b

nlcd_us_conus_imgn35w099_13nc4.nc

Add 🔻

imgn33w100_13nc4.nc

SRTMv3 3 N32W100.nc

GEO ...

GEO ...

Eco-Hydro Use Case Datasets Brokered

- Elevation
 - Global SRTM
 - 30m, 90m
 - Global GDEM 30m
 - US 30m NED
 - US 10m NED
 - US 3m NED
- Landuse
 - Global MODIS
 - Global USGS NLCD

- Soils
 - Global FAO Vector
 - US SSURGO Vector
- Historical Daily Weather
 - Global CFSR Gridded
 - Global GHCN Point
- Forecasts
 - Daily Global 16day
- Climate
 - Global Last Century Gridded
 - Global Next Century Gridded

Soil genesis as explained by

Variable Source Area Hydrology USDA WE38, PA, USA

Topography to explain soil depth and fractions

Using measured pedon data from ARS long term watershed

Soil genesis as explained by

 $Z_i = local soil depth$

 $Z_2 = 80 \text{ cm}$

Easton et al. 2008 Collick et al. 2014 Fuka et al. 2015

 $Z_6 = 100 \text{ cm}$

Hortonian Dominated Systems Riesel, TX, USA

Soil genesis as explained by

Easton et al. 2008 Collick et al. 2014 Fuka et al. 2015

How does SSURGO perform?

TI adjusted FAO Soils (●) vs base SSURGO Soils (+)

Conclusions

- Data Brokering can increase the speed and repeatability of initialization and provide multiple data sources in (SWAT) specific formats
 - Users don't have to understand multiple formats
- SSURGO initialization captured soil properties and this hydrologic response poorly
 - Sometimes under predicting and sometimes over predicting, in part due to the overestimated soil depth and AWC
- TI initialization better captured soil characteristics and as a result hydrologic response
 - This can be used to inform spatially targeted agricultural and water resource management decisions