





GEORG-AUGUST-UNIVERSITÄT Göttingen

Land use update function in SWAT – application in two macro watersheds in Brazil

> GABRIELE LAMPARTER, RODOLFO NOBREGA, KRISTOF KOVACS, GERHARD GEROLD – UNIVERSITY OF GÖTTINGEN

2015 SWAT coference, Pula, Italy



### Research Area

#### Aim:

Investigation of effects of land use change on stream flow
Inclusion of land use change in the model calibration and validation

### Land use change (Cerrado biome)

Cerrado: Natural scrubland savanna Tropical dry and wet climate(Aw Köppen) suitable for rain fed agriculture

Fragmentation of the landscape

Origianal: Cattle ranging

Agricultural intensification: Double Cropping of soy and corn

2015 SWAT coference, Pula, Italy

#### Land Use Change (Amazonian rainforest biome)

Rainforest, tropical monsoon climáte (Am Köppen)

ultural use: no

> Slash and burn.. Later pasture degradation

Current development:





Too wet for soy?

Gabriele Lamparter, glampar@gwdg.de

2015 SWAT coference, Pula, Italy

# We learned (mainly from microcatchment studies):

- Forest removal rises stream flow
- Forest removal reduces ET
- Agricultural land use rises soil bulk density
  - decreases infiltration capacity
  - ▶ increases surface runoff
  - decreases storage capacity...

BUT WHAT DOES IT DO ON MACRO CATCHMENT SCALE?

2015 SWAT coference, Pula, Italy

### Historic land use change



2015 SWAT coference, Pula, Italy



Rio das Mortes, Mato Grosso Cerrado Biome Jamanxim, Para Amazon rainforest Biome

#### 2015 SWAT coference, Pula, Italy

# Historic discharge records for the Rio das Mortes catchment



Guzha et al 2013 showed a clear trend between the 70th and 80th of rising discharge

2015 SWAT coference, Pula, Italy

### Experimental setup

|                                                                                                                   | Rio das Mortes (savanna)                 | Jamanxim (rainforest)            |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------|
| Calibration Period                                                                                                | 1977-1981                                | 2000-2004                        |
| Validation Period                                                                                                 | 1982-1986                                | 2005-2009                        |
| LU-update % per annum<br>in validation and<br>calibration period; mean<br>(min – max) for different<br>subbsasins | 2.4 (1.7-3.4)<br>(Cerrado to Non-Forest) | 0.6 (0-4)<br>(Forest to pasture) |
| Test application without land use update                                                                          | 1977-1986 (LU from 1988)                 | 2000-2009 (LU from 2011)         |

| Carbiocial Story lines        | Rio das Mortes                        | Jamanxim                              |
|-------------------------------|---------------------------------------|---------------------------------------|
| Scenario trend 2030           | 3% natural, 23% pasture, 73% cropland | 46% forest, 40% pasture, 13 cropland  |
| Scenario sustainable 2030     | 3% natural, 12% pasture, 84% cropland | 65% forest, 1% pasture, 34% cropland  |
| Scenario intensification 2030 | 2% natural, 24% pasture, 73% cropland | 30% forest, 57% pasture, 13% cropland |

#### 2015 SWAT coference, Pula, Italy

# Calibration and Validation: Rio das Mortes(Cerrado savannah) watershed

Discharge and precipitation records in the Rio das Mortes catchment



- ANA discharge station
- INMET climate records from 6
  - weather stations
- 2.5% annual Cerrado deforestation (Landsat and reconstruction)

2015 SWAT coference, Pula, Italy

# Calibration and Validation: Jamanxim (rainforest) watershed



- ANA discharge
   records
- CFSR Global weather (no INMET records in the whole watershed) –
- 0.6% annual rainforest deforestation (LANDSAT images)

2015 SWAT coference, Pula, Italy

| catchment                               | Rio das Mortes                | Jamanxim                      |  |
|-----------------------------------------|-------------------------------|-------------------------------|--|
| Area [km <sup>2</sup> ]                 | 17,556                        | 37,403                        |  |
| Dominant natural vegetation             | Cerrado and Gallery Forest    | Rainforest                    |  |
| Dominant soils types                    | Latosolo, Neosolo             | Latosolo, Argisolo            |  |
| Main period of deforestation            | 1975-1990                     | 2000-2010                     |  |
| Current degree of deforestation         | ~70%                          | ~26%                          |  |
| No of subbasins in the model            | 20 (260-1500)                 | 17 (890-4500)                 |  |
| (min-max [km²])                         |                               |                               |  |
| No of HRUs                              | 240                           | 135                           |  |
| Thresholds                              | 2% LU, 5% soil, 5% slope      | 2% LU, 5% soil, 5% slope      |  |
| Climate *                               | Aw after Köppen               | Am after Köppen               |  |
|                                         | Tropical wet and dry with 4-5 | Tropical monsoon climate with |  |
|                                         | months dry season             | 3 months dry season           |  |
| Annual rainfall [mm] *                  | Primavera d. Leste: 1784      | Novo Progresso: 2232          |  |
| Mean temperature [°C] *                 | Primavera d. Leste: 22.0      | Novo Progresso: 25.8          |  |
| Mean slope [%]                          | 2.9                           | 12.9                          |  |
| Fraction of slope: 0-2 2-5 5-max<br>[%] | 40.6   47.0   12.4            | 16.2   53.6   30.2            |  |

2015 SWAT coference, Pula, Italy

# Challenges:

- Data aquisition
  - Historical land use distribution/classification
  - Climate records
  - Discharge records

- Parametrisation
  - Evergreen vegetation
    - Cerrado Savanna
    - ▶ Rainforest

Soils

#### Management







2015 SWAT coference, Pula, Italy

# Challenges:

- Data aquisition
- Historical land use Landsat versus statistical information distribution / Climate records sparse and records with gaps - "mismatch Q and P"
   Discherer Limited additional information (e.g. Rating curve),

  - Discharge records







Weak defined cross-section

2015 SWAT coference, Pula, Italy

Gabriele Lamparter, glampar@gwdg.de

MAV precip, global weather RdM

# Challenges:

Vegetation:

- Dormancy
- Limited literature on Cerrado savanna / active mechanisms to deal with water stress

#### Parametrisation

- Evergreen vegetation
  - Cerrado Savanna
  - Rainforest
- Soils

#### Management

#### Soil:

- "old" map with Brazilian classification
- Sparse profile data for • soil type parametrisation
- Limited own data from • micro-watershed studies









MAV precip, global weather RdM

#### 2015 SWAT coference, Pula, Italy

### Calibration Vegetation and Soil dependent

| parameter                   | description                 | Land use<br>dependent | Soil class<br>dependent |
|-----------------------------|-----------------------------|-----------------------|-------------------------|
| GW_delay [days]             | Groundwater delay           |                       | Х                       |
| GW_revap                    | Groundwater                 |                       | Х                       |
|                             | revaporation                |                       |                         |
| Sol_K [mm h <sup>-1</sup> ] | Soil hydraulic conductivity | Х                     | Х                       |
| CN2                         | Curve Number                | Х                     | Х                       |

- Matrix of parameter calibration dependent on vegetation and soil
- Automatic calibration with SWAT-CUP SUFI-2
- Calibration: 2 iterations with each 1500 runs

Plus other parameters: such as GW\_DELAY, Alpha BF etc...

#### Calibration Validation and Test results:

|                             | Rio das Mortes | Jamanxim  |
|-----------------------------|----------------|-----------|
| Calibration                 | NSE: 0.68      | NSE: 0.80 |
| Validation: land use update | NSE: 0.63      | NSE: 0.85 |
| Test: steady land use       | NSE: 0.48      | NSE: 0.81 |

#### Rio das Mortes Calibration, Validation and Test

Calibration and Validation with land use update Rio das Mortes catchment 2000 95% confidentiality interval difference in discharge [m<sup>3</sup>s<sup>-1</sup>] observed 1500 best estimation 1000 500 0 Jan 1977 Jan 1978 Jan 1979 Jan 1980 Sep 1980 Oct 1981 Oct 1982 Jun 1983 Jun 1984 Jun 1985 Jun 1986 Date Test with steady land use distribution 1988 Rio das Mortes catchment 2000 95% confidentiality interval difference in discharge [ m<sup>3</sup> s<sup>-1</sup>] observed 1500 best estimation 1000 200 0 Jun 1986 Jan 1977 Jan 1978 Jan 1979 Jan 1980 Sep 1980 Oct 1981 Oct 1982 Jun 1983 Jun 1984 Jun 1985 Date Prediction errors 200 difference in discharge [ m<sup>3</sup> s<sup>-1</sup>] 100 0 -100 and use update steady landuse 200 difference

Oct 1981

Oct 1982 Jun 1983

Jun 1984

Jun 1985

Jun 1986

Lowless regression

Jan 1978

Jan 1979

Jan 1980 Sep 1980

Jan 1977

Jamanxim: Calibration, Validation and Test







#### CONCLUSION:

 Especially in periods with rapid and fundamental land use change even simple land use update improves model performance (effect is more pronounced for Rio das Mortes catchment)

#### FURTHER WORK:

- Quantification of the "improvement"
- Investitgation of seasonality in runoff
- Did we get it right for the right reasons? More investigation into the water balance components (soft data)
- Climate feedback in the rainforest
- Scenarios (Storylines and Management)









### Scenarios 2030 Rio das Mortes





80

60

40

20

0

Jan 2026

Jul 2027

Jan 2029

Jul 2030

[mm]





Legend Basin rainforest water savanna

pasture cropland 0 5 10 20 30 40 Kilometers



an

Jan 2032

Jul 2033

Jan 2035

Jul 2030



G

2

0

Jan 2026

Jul 2027

Jan 2029

# Jamanxim: Changes in Q are mainly changes in ET

