Applying treated municipal wastewater to a forested catchment: Modelling effects on stream discharge, sediment and nutrient loads

THE UNIVERSITY OF WAIKATO Te Whare Wānanga o Waikato

2015 International SWAT Conference and Workshops 22–26th June, 2015, Sardinia, Italy

Background

- The use of forested areas for wastewater irrigation has been increasingly adopted for tertiary treatment in inland cities
- The Soil and Water Assessment Tool (SWAT) has been used to evaluate impacts of alternative land management practices
- Few studies have applied the hourly routing algorithm in SWAT to simulate nutrient fluxes, or to evaluate forestry irrigation

Wastewater disposal at Nipawin, Canada Photo: SaskWater

Wastewater disposal at Penn State, US Photo: Matthew Laposata

Photo: Centuries-old trees, Rotorua, New Zealand

Objectives

- Evaluate the effectiveness of a Land Treatment System (LTS) for nutrient removal from treated wastewater
- Examine and simulate (with SWAT) long-term (10-year) effects of treated wastewater irrigation, forestry harvesting, and altered rainfall on LTS
- Run scenarios to provide information on the effects of different management strategies for wastewater irrigation

Study area

Summary of SWAT setup

✓ Digital Elevation Model

- ✓ Meteorological records
- \checkmark Atmospheric deposition
- ✓ Soil parameterization
- ✓ Land use classification
- \checkmark Plant growth
- ✓ Management schedules
- ✓Point sources (e.g. spring)
- ✓ Monitoring station
- ✓ Hydrologic forcing data:
 - Hourly rainfall

✓ Hourly rainfall/infiltration
(Green and Ampt, 1911)/hourly
routing algorithm

Management schedule setup

- Each block was assumed to be planted and mature at the start of the modelling period.
- Pine harvesting operations were configured by the harvesting date.

Variable	Definition	Specification	
IRR_AMT	Depth of irrigation water applied on HRU	Daily irrigation volume	
IRR_SQ	Surface runoff ratio (fraction)	Web-based Hydrograph Analysis Tool	
IRR_SC	Irrigation source	Outside of the catchment	
FRT_KG	Amount of fertilizer applied to HRU (kg ha ⁻¹)	Contaminants in the wastewater	
FRT_SURFACE	Fraction of fertilizer applied to top 10 mm of the soil	Web–based Hydrograph Analysis Tool	

Challenges

The complexity of irrigation operations ✓ Multiple blocks were configured with daily input for up to three operations (irrigation, fertiliser application and tree harvesting) for a period of 10 years Limited consideration in hourly routing algorithm of modelling nutrient transport

SWAT2012 code modifications

Management schedules	Management schedules	Sediment erosion	Phosphorus simulations	Nitrogen simulations
Apply daily fertilizer (kg) onto each forested block which covers numerous HRUs 'sched_mgt.f' 'fert.f' 'soil_write.f'	Operate a 10–year daily management schedule 'iopera' allocate_parms.	Simulate sediment load using hourly routing algorithm f, 'rthsed.f' 'rtout.f' 'route.f' 'ysed.f'	Simulate inorganic P bound to sediment 'soil_chem.f' 'psed.f' 'enrsb.f' 'solp.f'	Constrain values of parameters for hydrolysis rate within the default range 'orgn.f'

Modelled vs. measured weekly mean suspended solids

Modelled vs. measured weekly mean total phosphorus

Modelled vs. measured weekly mean total nitrogen

Photo: Irrigated block, Rotorua, New Zealand

Irrigation scenarios

Scenario	Specification		
(i) Increasing	Wastewater applied evenly on two blocks, four		
irrigated area	blocks, or eight blocks on the same soil type		
(ii) Avoiding	Irrigation during 'wet' days with rainfall > 20 mm d ⁻¹ shifted to the first subsequent dry day		
irrigation during			
high rainfall			
(iii) Weekly	Total weekly wastewater was irrigated on the first		
irrigation	day of a week and no irrigation was undertaken on		
frequency	the remaining days in that week		
(iv) Irrigation	Irrigation removed for the period 2007–2012		
removal			

Annual mean TN load deviation from current irrigation schedule

Comparison of simulated Waipa Stream nitrate load with and without (after 2007) wastewater irrigation

Conclusions

- LTS was highly effective for TP removal but made much lesser contribution to TN removal
- Harvesting operations and extreme high rainfall appeared to result in peaks in SS and TP simulations
 - Scenario simulations indicated:
 - avoiding irrigation during high rainfall events could increase nutrient leaching
 - daily irrigation frequency could be more effective in removing TN than less frequent irrigation
 - removing irrigation could rapidly reduce NO₃–N to earlier background levels

Future work

To predict TN and TP load attenuation effects for Lake Rotorua: wastewater irrigation may cease by 2019

- To predict effects of future climate on stream loads and Lake Rotorua
- To consider groundwater processes and lag times in more detail

Acknowledgements

- This study was funded by Bay of Plenty Regional Council (BoPRC).
- Data collection was assisted by:
- Alison Lowe & KimLockie (Rotorua DistrictCouncil)
- Andy Bruere & PennyMacCormick (BoPRC)
- Cheryl Hindle(Timberlands Limited)

The campus of the University of Waikato, Hamilton

Photo: Sunset at Lake Rotorua, New Zealand

Thank you !

2015 International SWAT Conference and Workshops 22–26th June, 2015, Sardinia, Italy