

Development of an improved irrigation subroutine in SWAT to simulate the hydrology of rice paddy grown under submerged conditions

Balaji Narasimhan Associate Professor Department of Civil Engineering Indian Institute of Technology – Madras

V. M. Bindhu Assistant Professor, VIT University, INDIA K. Karpagam Research Associate, IIT Madras, INDIA Nithila Devi Graduate Student, IIT Madras, INDIA

Rice Paddy representation in SWAT

Modifications to Pothole module

Features	Current	Modifications
Standing water	Is possible to a limited extent	Is possible
ET and crop growth	Evaporation from pothole is NOT accounted for while calculating water stress	Evaporation from pothole is accounted for while calculating water stress
Hard Pan layer	Not modelled; constant seepage rate	Two Layer Green-Ampt model; Variable seepage depending on saturation
Infiltration loss	Discharged to ground water; Does not contribute toward soil moisture	Contribute to soil moisture of first soil layer; Percolation out of the last layer contributes to ground water
Autoirrigation	Autoirrigation not possible based on ponded water level	Autoirrigation trigger is possible based on ponded water level
Irrigation Efficiency	Only total irrigation efficiency	Splitted into Conveyance efficiency and application efficiency; Loss due to conveyance efficiency is added to ground water recharge

Single Layer Green-Ampt model

Two Layer Green-Ampt model Hard pan assumed to have 1/5th the K_{sat} of plough layer Evaporation ranspiration Thickness – 10mm Precipitation Insignificant storage Surface Plant Runoff # # Upper layer parameters $K_1, \Psi_1, \Delta \theta_1$ H_1 Sub Surface Soil Profile Lateral flow Lower layer H_2 Parameters $K_2, \Psi_2, \Delta \theta_2$ **Percolation/GW** $(K_2 < K_1)$ vap Recharge Source: Ven T. Chow Shallow Aquifer Ś GW $f = \frac{K_1 K_2}{H_1 K_2 + L_2 K_1} (\psi_2 + H_1 + L_2)$ Flow $F = H_1 \,\Delta\theta_1 + L_2 \,\Delta\theta_2$ Percolation Deep Aquifer $L_2 \frac{\Delta \theta_2}{K_2} + \frac{1}{K_1 K_2} [\Delta \theta_2 H_1 K_2 - \Delta \theta_2 K_1 (\psi_2 + H_1)] \ln \left[1 + \frac{L_2}{\eta_2 + H_1} \right] = t$

Irrigation efficiency ~ (conveyance efficiency X field application efficiency)=40%

Earthen cana			nals	Lined canals
Soil type	Sand	Loam	Clay	
Canal length				
Long (> 2000m)	60%	70%	80%	95%
Medium (200-2000m)	70%	75%	85%	95%
Short (< 200m)	80%	85%	90%	95%

Source: FAO manual

Irrig	ation methods	Field application efficiency
Surfa	ce irrigation (border, furrow, basin)	60%
Sprin	kler irrigation	75%
Drip	rrigation	90%
Drip	rrigation	90%

 $e = \frac{ec \times ea}{100}$

with

e = scheme irrigation efficiency (%)
ec = conveyance efficiency (%)
ea = field application efficiency (%)

A scheme irrigation efficiency of 50-60% is good; 40% is reasonable, while a scheme Irrigation efficiency of 20-30% is poor.

Auto Irrigation trigger

Plant growth Fraction of potential plant growth reduced due to water stress RAW (Readily Available soil Water) Saturation Soil water stress root zone reservoir -- 0% RAW-1a: [0% RAW] ■ 1 – Depletion. Fac TÁW 50% RAW-Depletion factor 1b: (80% RAW) 2a: (100% RAW)+ • SW/TAWC 3a: (110% RAW) Ponded water level 150% RAW-

PWP— 200% BAW—

Air dry soil -

2b and 3b

Сгор		Root zone depth	Allowable soil	
		(RZD) ¹	moisture depletio	on
		(m)	(P)²	
a. Small vegetables				
Broccoli		0.4-0.6	0.45	
Brussels sprouts		0.4-0.6	0.45	
Cabbages		0.5-0.8	0.45	
Carrots		0.5-1.0	0.35	
Cauliflowers		0.4-0.7	0.45	
Celery		0.3-0.5	0.20	
Garlic		0.3-0.5	0.30	
Lettuce		0.3-0.5	0.30	
Onions	– dry	0.3-0.6	0.30	
	– green	0.3-0.6	0.35	
	- seed	0.3-0.6	0.35	
Spinach		0.3-0.5	0.20	
Radishes		0.3-0.5	0.30	
h Vegetables - Selanum	Eamily (Solanacea)			
 vegetables – solanuli Econlant 	(Solanacea)	07.12	0.45	
Cygpiant Sweet concorr (ball)		0.5 1.0	0.40	
Sweet peppers (beil)		0.3-1.0	0.30	
Iomatoes		0.7-1.5	0.40	
c. Vegetables – Cucumb	er Family (Cucurbitaceae)			
Cantaloupes		0.9-1.5	0.45	
Cucumbers	 fresh market 	0.7-1.2	0.50	
	 machine harvest 	0.7-1.2	0.50	
Pumpkin, winter squash		1.0-1.5	0.35	
Squash, zucchini		0.6-1.0	0.50	
Sweet melon		0.8-1.5	0.40	
Watermelon		0.8-1.5	0.40	
d Roots and tubers				
Reat table		0.6.1.0	0.50	
Cossava	waar 1	0.5-0.9	0.35	
Gassava	- year 7	0.5-0.0	0.35	Sour
Parroine	- year 2	0.7-1.0	0.40	
Patships		0.0-1.0	0.40	nanı
Potatoes		0.4-0.6	0.35	
Sweet potatoes		1.0-1.5	0.05	
Turnips (and Rutabaga)		0.5-1.0	0.50	
Sugar beet		0.7-1.2	0.553	

February 23, 2013

FTP Group Monitoring Workshop, Pondicherry University

Record daily measurements in the field water tube and percolation tube in order to estimate the field water balance based evapotranspiration.

RESULTS AND DISCUSSION

Ponded water level

Constant infiltration rate

Two layer Green & Ampt model

Based on ponded water level

Other Modifications

Irrigation from farm ponds

There are lot of small tanks (not big enough to be reservoirs) from which significant amount of irrigation takes place in India and other countries

Simulation of conjunctive water use is possible

(Auto) Irrigation from a mix of surface and ground water sources

Future Plans

Testing with many more field data

- India and other countries
- Verification with other models ORYZA, AQUACROP, DSSAT
- Turning-ON and OFF auto irrigation for different phases of crop growth
 - Based on ponded water level for some growth stages & soil water stress for other stages
 - Irrigation BMP (SRI, AWD etc.,)
- Integration of the modifications to the current code and the modular code