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a b s t r a c t

WRESTORE (Watershed Restoration Using Spatio-Temporal Optimization of Resources) is a web-based,
participatory planning tool that can be used to engage with watershed stakeholder communities, and
involve them in using science-based, human-guided, interactive simulationeoptimization methods for
designing potential conservation practices on their landscape. The underlying optimization algorithms,
process simulation models, and interfaces allow users to not only spatially optimize the locations and
types of new conservation practices based on quantifiable goals estimated by the dynamic simulation
models, but also to include their personal subjective and/or unquantifiable criteria in the location and
design of these practices. In this paper, we describe the software, interfaces, and architecture of
WRESTORE, provide scenarios for implementing the WRESTORE tool in a watershed community's
planning process, and discuss considerations for future developments.

© 2015 Elsevier Ltd. All rights reserved.
Software availability

Name of software: WRESTORE (Watershed REstoration using
Spatio-Temporal Optimization of Resources)

Developers: Vidya Bhushan Singh, Meghna Babbar-Sebens, Adriana
Debora Piemonti, and Snehasis Mukhopadhyay

First available year: 2014
Software requirements: Web-browser
Programming language: Java
Language: English
Minimum hardware requirements: Intel Pentium II, 200 MHz,

128 MB RAM
Contact person: Meghna Babbar-Sebens (Corresponding author)
URL: http://wrestore.iupui.edu/
1. Introduction

Recently, there has been an increased effort to help mitigate the
effects of increased climate change induced flooding by restoring
bar-Sebens).
degraded upland and downstream storage capacities of watersheds
via conservation practices. For example, Hey et al. (2004) reported
that the 80-day Mississippi River flood in 1993 e which generated
48 billion cubic meters (or, 39 million acre-feet) of floodwaters at St
Louis, MO e could have been contained within the 49 billion cubic
meters (or, 40 million acre-feet) storage that could have been
provided by adding storage capacities of the drained wetlands to
the existing levees and existing wetlands. Lemke and Richmond
(2009) and Babbar-Sebens et al. (2013) have also suggested that
re-naturalization of the hydrologic cycle with best management
practices (or, conservation practices) on the landscape can solve
both water quantity and water quality problems in mixed land use
watersheds. However, design of a system of conservation practices
for upland storage is a complex process because there can be a large
number of alternative sites, scales, and mitigation methods, and
because e with multiple stakeholders e there can be multiple
criteria and constraints for selection among alternatives. Addi-
tionally, achieving the desired level of restoration in a watershed
will depend not only on the diverse costs and benefits of modifying
the landscape but also on whether the landowners and other
stakeholders will find prescribed practices acceptable when they
are constrained by their subjective perceptions, uncertainty in
human behavior, and local field-scale conditions (Wilcove, 2004).
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Therefore, successful restoration of hydrology requires obtaining a
thorough understanding of the people and ecological processes
that are unique to the watershed system, and then using this un-
derstanding in the design of appropriate management alternatives
for restoring/creating upland storage systems.

Designing or generating alternatives is an integral part of
problem-solving and decisionmaking processes. In commonly used
models (and their adaptations) of decision-making processes, such
as those proposed by Mintzberg et al. (1976) and Simon (1977), the
design of alternatives usually occurs in the second phase of a three
phase process that includes e (1) problem identification and defi-
nition phase, (2) problem development and alternatives generation
phase, and (3) negotiation and selection phase. The first phase in-
volves interaction with stakeholders and experts to identify,
structure, and define the problem. For example, for the restoration
problem, this would involve developing a conceptual model of the
combined human-physical system, and quantitatively defining the
various objectives and constraints of the restoration project based
on projects costs, economic benefits, environmental benefits, and
stakeholder values and preferences. Conducting interviews with
stakeholders and constructing quantitative economic valuation of
the various ecosystem services provided by the upland storage
systems would be an integral part of this phase. The second phase
involves use of various computational tools, such as, simulation
models and search/optimization algorithms. These models and al-
gorithms along with the parameters of the search/optimization
algorithm, and quantitative representations of the problem objec-
tives and constraints defined in Phase 1, are then used to generate
optimized sets of alternatives (or, scenarios of solutions) that would
satisfy or outperform the problem objectives. When multiple con-
flicting objectives exist in a natural resource planning and man-
agement problem, a non-dominated set of alternatives are
generated by the optimization algorithms, which is also called the
Pareto-optimal set or a tradeoff curve. This phase is computation-
ally intensive, and generally assumes that multiple stakeholder
values and preferences obtained in Phase 1 can be quantified and
reliably used to search for alternatives and to generate a search
outcome for Phase 3. Once, the search has ended in Phase 2, the
alternatives are then presented to the stakeholders in Phase 3 for
decision making and selecting a final alternative for implementa-
tion. Many multi-criteria decision aid techniques exist in the liter-
ature (Haimes and Hall, 1974; Soncini-Sessa et al., 2007; Assaf et al.,
2008; Castelletti and Soncini-Sessa (2006, 2007)), which can be
used to include stakeholder feedback to select the “final” alterna-
tive in Phase 3 from a set of optimized non-dominated optimal
alternatives, based on multiple quantitative and qualitative criteria.
However, by the time the stakeholders reach Phase 3 for decision
making it is typically assumed that the search/optimization process
in Phase 2 has used an accurate or close to accurate representation
of the stakeholder criteria, and, therefore, alternatives optimized
for these quantitative representations will be “optimal” solutions to
the problem. This is, however, not true since in real-world water-
shed problems there can also be local knowledge, non-quantifiable
beliefs and values, and incomplete/unstated preferences of the
stakeholders that may not be captured in simulationeoptimization
models (Andrad�ottir, 1998; Fu, 1994, 2002; Gosavi, 2003; Law and
Kelton, 2000). This can lead to stakeholders’ dissatisfaction with
the optimized alternatives and poor adoption of prescribed alter-
natives (Soncini-Sessa et al., 2007). In summary, though many
methods in the literature have been developed for incorporating
active stakeholder involvement in Phases 1 and 3, active involve-
ment of stakeholders has been limited in the search and design
process (i.e., Phase 2).

With the current trend of water resources planning and man-
agement approaches becoming more “bottom-up” or participatory
(Assaf et al., 2008; Voinov and Bousquet, 2010; McIntosh et al.,
2011; D€oll et al., 2013; Hamilton et al., 2015), where stakeholders
are involved in all stages of modeling and planning, the need for
better understanding of people-related processes in design of al-
ternatives has become ever more crucial. Involving stakeholders in
the multiple steps of the decision making process, including the
alternatives generation phase (i.e. Phase 2), can yield multiple
benefits (Bierle, 1999; Daniels and Walker, 2001; Selin et al., 2007).
For example, stakeholder involvement (a) gives individuals a sense
of ownership in the decision process by allowing them to directly
influence the problem-solving process, (b) provides a platform for
open and honest expression of stakeholder views, and (c) improves
the legitimacy of the planning andmanagement process, while also
conveying the complexities and uncertainties associated with this
process to the public. With ongoing developments in Web tech-
nologies, the internet has the potential to be a robust medium for
supporting participation of and communication between stake-
holders in natural resources management (Esty, 2004; Rinner et al.,
2008; Kelly et al., 2012). Kelly et al. (2012) reports that most of the
current research in using the Web in natural resources manage-
ment has been focused on (a) information delivery to the public by
government agencies, with the ability for public to comment on on-
line documents (e.g., Beckley et al., 2006; Conrad and Hilchey,
2011), (b) interactive social-web tools for harnessing (or “crowd-
sourcing”) feedbacks from large groups of individuals via on-line
dialogs and discussions (e.g., Kangas and Store, 2003; O'Reilly,
2007; Hudson-Smith et al., 2009), and (c) development of map-
ping and other spatial decision support tools for effectively
communicating spatial data to support decision making (e.g.,
Kearns et al., 2003; Sheppard and Meitner, 2005; Brown and Reed,
2009; Brown and Weber, 2011). It is worthwhile to note that none
of the existing technologies and software cited in these studies
provide a truly human-computer collaborative design environment
where stakeholders can participate in design experiments to
visualize alternatives and provide feedbacks on both the design
features and acceptability of system-generated alternatives, and in
return have that feedback used to generate new community-
preferred alternatives of natural resources management plans.

In a 1985 seminal paper, Fisher (1985) motivated a discussion on
optimization/search algorithms that were interactive and allowed
humans to be a part of the search process, especially for problems
where human thought processes would provide “superior”
advantage to the “algorithmic thinking” employed by a computere
for example, processes related to visual perception, strategic
thinking, and the ability to learn. According to his discussions,
incorporating human interaction within the optimization algo-
rithms could e (a) facilitate model specification and revisions, (b)
help copewith problem aspects that are difficult to quantify, and (c)
assist in the solution process. A humanecomputer collaborative
decision support framework that uses such a search process would
allow stakeholders real-time access to influence the search process
of the optimization algorithm by influencing the definition of ob-
jectives and constraints, the characterization of alternatives, the
simulation models, and algorithm parameters. This not only allows
a more flexible and transparent framework for including stake-
holders preferences and subjective knowledge to construct mean-
ingful, better performing, and desirable (from the perspective of
both humans and quantitative evaluation objective functions) al-
ternatives; it also creates a venue for improving the cognitive
learning process of the interacting human (Babbar-Sebens and
Minsker, 2012). Also known as human-guided search (Klau et al.,
2009), the interactive search/optimization process has been
explored in applications such as space shuttle scheduling (Chien
et al., 1999), vehicle routing (Waters, 1984), face image generation
(Takagi, 2001), and constraint-based graph drawing (do
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Nascimento and Eades, 2002). In recentwork by Babbar-Sebens and
Minsker (2012), heuristic Genetic Algorithms were examined as
interactive optimization methods for solving a ground water
monitoring problem. In their research, the authors proposed an
innovative algorithm, Interactive Genetic Algorithm with Mixed
Initiative Interaction (IGAMII), which examined the effect of
including a single decision maker in the optimization algorithm's
loops (i.e. human-in-the-loop) to guide the search process. The
main aim of the interactive optimization process was to enable the
user to assist the optimization algorithm find solutions in the “re-
gion of desirable solutions,” which could be more optimal from the
user's non-quantifiable perspective than the solutions on the Par-
eto front found via a typical non-interactive search and based on
only the quantified representative objectives. It is this region of
desirable solutions that are of most interest to the decision maker
since their subjective evaluation by the user will be complemented
by their performance in the quantitative evaluations. Effects of
various human factors, such as human fatigue, non-stationarity in
preferences, and the cognitive learning process of the human de-
cision maker on the search process of the interactive genetic al-
gorithm were also addressed in their research.

In this paper, we present the development of a new, web-based,
interactive optimization tool, Watershed REstoration using Spatio-
Temporal Optimization of Resources (WRESTORE), which is based
on the IGAMII algorithm and provides a participatory environment
for generating individual and community-preferred alternatives of
conservation practices in watersheds. Unlike the original desktop-
based IGAMII algorithm and other participatory desktop-based
planning tools (e.g., WEAP by Yates et al., 2005a, 2005b; Catch-
ment Simulation Shell by Argent and Grayson, 2003), WRESTORE
uses Web 2.0 technologies to reach out to larger stakeholder
communities for participatory planning efforts and in crowd-
sourcing the design of potential conservation practices in a water-
shed. In this manner, the tool can be used to engage multiple,
diverse watershed stakeholders and landowners via the internet,
thereby improving opportunities for outreach and collaborations.
Multiple visualization interfaces, computational simulation and
optimization models, and user modeling, and engagement tech-
niques are part of the WRESTORE methodology to support a
human-centered design approach. Users are able to (a) design
multiple types of conservation practices in their sub-basins and at
the entire watershed scale, (b) examine impacts and limitations of
their decisions on their neighboring catchments and on the entire
watershed, (c) compare alternatives via a cost-benefit analysis, (d)
vote on their “favorite” designs based on their preferences and
constraints, and (e) propose their “favorite” alternatives to policy
makers and other stakeholders. This human-centered design
approach, which is reinforced by use of internet technologies, has
the potential to enable policy makers to connect to a larger com-
munity of stakeholders and directly engage them in environmental
stewardship efforts. The use of web-based interaction technologies
also enable an improved understanding of how users explore al-
ternatives that interest them, learn from making choices in a safe
simulated environment, and change their perceptions of alterna-
tives. This issue is also especially important in the context of agri-
cultural landowners whose mental maps, perceptions, behaviors
and attitudes affect their understanding of their environment and
their intrinsic motivation to adapt to the changing environment.
For example, McCown (2002) insisted that a paradigm shift is
needed in the implementation of decision support systems, spe-
cifically a “shift in emphasis from ‘design’ to ‘learning,’ without
abandoning design. Users must undergo an iterative learning and
practice change process. The researchers must be prepared to be
involved in, lend support to, and learn from this processdlearn what
the farmers are learning”. Moreover, the software and decision
support tool developed is this research provides a framework for
investigations on similar human-centered and web-based partici-
patory design technologies in the future. While this paper only
presents the software development and testing of the participatory
design tool, multiple research investigations on the simulation
models, algorithms, user-learning, etc. supported by WRESTORE
have been (e.g., Babbar-Sebens and Minsker, 2012; Babbar-Sebens
et al., 2012; Piemonti et al., 2013) and will be presented in sepa-
rate research articles.

2. WRESTORE software description

2.1. Representation of conservation practices in WRESTORE

Seven conservation practices are currently modeled in WRES-
TORE eWetlands, Filter Strips, Grassed Waterways, Strip Cropping,
Cover crops, Crop Rotation, and No-till tillage practice. The main
goal of the WRESTORE tool is to assist stakeholders in identifying
the most effective spatial distribution and design of conservation
practices (or, best management practices (BMPs)) in the various
sub-basins of their watershed. Users have the ability to select one
ormore practices from the candidate practices being considered for
a watershed, and the spatial design is based on decisions made by
the underlying optimization algorithm for every practice in every
sub-basin. For example, if a watershed has N number of sub-basins
where practices can be implemented, and if a user wants to
consider all seven practices in the N sub-basins, then WRESTORE's
underlying optimization algorithm will assign values to decision
variables representing these practices in the following manner (see
Babbar-Sebens et al. (2013) and Piemonti et al. (2013) for more
details):

(i) Strip cropping, crop rotation, no-till, cover crops, and grassed
waterways: These five practices are all modeled as binary
decisions, xij, which can have a value of 1 (when the practice
is proposed for implementation in a sub-basin) or 0 (when
the practice is not implemented in a sub-basin). The sub-
script i is the designated ID of each of these five practices
in WRESTORE and is used to identify the practice. The sub-
script j stands for every sub-basin where practices can be
implemented, and it varies from 1 to N.

(ii) Filter strips: This practice is modeled as a real number de-
cision variable yij, which is thewidth of the filter strip along a
stream in the jth sub-basin. The sub-script i is the designated
ID of the filter strip practice in WRESTORE. The range of
values between which a decision on filter strip widths can
vary have to be determined before an experiment (e.g.,
minimum value ¼ 0 m and maximum value ¼ 50 m).

(iii) Wetlands: Two real-valued decision variables, yij, for each
sub-basin are used to identify the design of wetlands across
sub-basins e one on the maximum wetland area
(WET_MXSA) and one on the fraction of sub-basin area that
drains into the wetland (WET_FR). Subscript i is the desig-
nated practice ID of the two wetland decision variables
WET_MXSA and WET_FR in WRESTORE, and subscript j is the
ID of the sub-basin respectively. The minimum and
maximum values of these variables for every sub-basin need
to be provided toWRESTORE, and, if not easily available for a
watershed, can be determined using a GIS methodology
proposed by Babbar-Sebens et al. (2013).

WRESTORE's underlying optimization algorithm (discussed in
detail in sections below) generates a large number of map scenarios
or map alternatives, where each alternative has a unique spatial
combination of the decision variables related to the practices (e.g.,
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Fig. 1 shows an example of Decision Alternatives by using icons and
colors on a map to indicate values of individual sub-basin decision
variables for each practice). However, to simulate effectiveness of
all of these alternatives, decision variables are mapped into hy-
drologic and environmental variables in the watershed model
chosen by a community to simulate conservation practices in the
specific watershed (as shown in the Process Simulation box in
Fig.1). Currently, we use the Soil andWater Assessment Tool (SWAT
(Arnold et al., 2001, 2005)) to simulate individual practices in
WRESTORE. While details on how each practice is simulated in
SWAT can be found elsewhere (e.g., Bracmort et al. (2006), Arabi
et al. (2007), Piemonti et al. (2013), and Rabotyagov et al. (2013)),
here we only provide a brief summary on how the decisions would
be mapped into specific input variables for the SWAT model based
on our earlier study (Piemonti et al. (2013)):

(i) Strip Cropping: This practice increases the surface roughness,
and reduces surface runoff and sheet and rill erosion (Arabi
et al., 2007). When a sub-basin has decision variable xij ¼ 1
for this practice, then the CN (curve number), USLE_P
(Practice factor in the Universal Soil Loss Equation), and
OV_N (Manning's roughness coefficient) for that sub-basin
are modified in the crop-related .mgt files. See Piemonti
et al. (2013) for details on how appropriate values for these
parameters can be determined.

(ii) Crop Rotation: This practice improves soil quality, creating a
balance of nutrients in the soil, conserves water, reduces soil
erosion, and decreases plant pest infestations. SWAT simu-
lates crop rotation through the operation schedule inputs in
.mgt files. When a sub-basin has decision variable xij ¼ 1 for
this practice, then the most common crop rotation opera-
tions schedule for the watershed is used in the crop-related
.mgt files of that sub-basin.

(iii) Cover Crops: This practice helps in improving soil moisture
content, minimizing soil compaction, preventing erosion,
and increasing soil organic matter. This practice is generally
implemented at the time when land is not being used for
Fig. 1. Conservation practices in WRESTORE e decision altern
production (winter/spring). The SWAT model allows sched-
uling of more than one cover crop per year, once in the fall
and once in spring. When a sub-basin has decision variable
xij ¼ 1 for this practice, then the most common cover crop
operations schedule for the watershed is used in the crop-
related .mgt files of that sub-basin.

(iv) Filter Strips: This practice reduces suspended solids and
associated contaminants in the runoff. It is generally imple-
mented on the edges of channel segments. Based on the
value of the decision variable yij for this practice, the FIL-
TERW (Filter width) variables in .mgt files of that sub-basin
are replaced by the yij value.

(v) Grassed Waterways: This practice reduces gully erosion,
reduces flow velocity and increases sediment settlement
(Arabi et al., 2007). Sub-basins with first-order streams are
allowed to have this practice in WRESTORE. When such a
sub-basin has decision variable xij ¼ 1 for this practice, the
variable CH_COV (Channel cover factor) is modified in the
.rte file of that sub-basin. See Piemonti et al. (2013) for
details on how an appropriate value for this parameter can
be determined.

(vi) No-Till: This practice increases the amount of organic matter
and moisture in the soil, and also decreases erosion. When a
sub-basin has decision variable xij ¼ 1 for this practice, the
tillage operation in the operation schedule in the crop related
.mgt files of the sub-basin is replaced by a no till operation
commonly implemented in the watershed.

(vii) Wetlands:Wetlands reduce sediments in runoff, reduce peak
flows in streams, reduce nutrient loads in runoff, and also
provide habitat for wildlife. Wetlands are simulated in SWAT
as water bodies at outlets of sub-basins, with a maximum of
one wetland at every outlet. The SWAT variables wet fraction
(WET_FR) and maximum wetland area (WET_MXSA) in the
.pnd files of each sub-basin are replaced by the values of the
related decision variable yij. See Babbar-Sebens et al. (2013)
for details on how appropriate values for these parameters
can be determined
atives, process simulation, and measures of performance.
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Once the decision variables of an alternative have been mapped
into appropriate input variables for the watershed model (e.g., the
SWATmodel in the current version ofWRESTORE), the input files of
the model are updated, and the process simulation model is then
run for a specific period of simulation time. The output files
generated by the model can next be used to estimate performance
of the practices proposed in this alternative. Performance can be
estimated for a short time period or long time period, based on how
long the simulationwas run for. Currently five types of performance
measures are available in WRESTORE (see Fig. 1), with the plan to
add more. The first one is called user rating that is provided by the
user during the WRESTORE experiment (described in Sections
2.2e2.5) and serves as a representation of the user's subjective
criteria and preference for an alternative. The other four of these
performancemeasures are used as quantitative Objective Functions
(or, quantitative criteria) by the underlying optimization algorithm
(described in sections below), and can be estimated for each sub-
basin and also for the entire sub-basin from the physical state
variables in model output files. Here we only provide a brief sum-
mary on how these performance measures are calculated based on
our earlier study (Piemonti et al. (2013)):

(i) Cost-revenue function: This objective function considers the
costs and revenues generated by the conservation practice
over model time period T1eT2 (in years). It represents net
present values (across all N sub-basins) of all economic costs
and revenues that the conservation practices would accrue
for the landowner investing in this practice at a sub-basin j,
and is given by:

2 3
pea
EC ¼ min4XN
j¼1

NPVj
5 (1)
kflowi;t;case ¼
�
flowouti;t;case; if flowouti;t;case > flowouti;t�1;case AND flowouti;t;case > flowouti;tþ1;case

0; otherwise

�
(5)
where,NPVj (or Net Present Value of Economic Costs in US dollars at
a sub-basin j) is calculated using,
NPVj¼
XBMP

i¼1

�
CIi*Aj;i

�

þ
XT2
ty¼T1

(XBMP

i¼1

��
OMi;ty�Rini;ty

�
*Aj;i

��PIty�SPty

)
*PWFty

(2)

Where, i is the specific conservation practices out of BMP number of
practices, CIi is the cost of implementation in dollars per acre for
each conservation practice, Aj,i is the area in acres of the conser-
vation practice i in a sub-basin j, ty is the year that varies from T1 to
T2, OMi,ty is the operation and maintenance cost in dollars per acre
per each conservation practice i in year ty, Rini,ty is the rent received
by the conservation program in dollars per acre for those lands that
are taken out of production for the conservation practice i in year ty,
SPty is the savings in costs of crop productions in dollars of taking
land out of production for conservation practice in year ty, PIty
represents the net profits, in dollars, obtained from increased
productivity in year ty. PWF is the single payment present worth
per year based on interest rate int and is given by Equation (3)
below. Details on calculation of individual terms in Equation (2)
can be obtained from Piemonti et al. (2013).
PWFty ¼ 1
ð1þ intÞty (3)

(ii) Peak flow reduction function: Peak flow reduction repre-
sents impact on flooding and is calculated based on the
maximum difference between the peak flows of the cali-
brated baseline model without any new conservation prac-
tices and peak flows of the model that includes conservation
practices proposed by an alternative found via the optimi-
zation algorithm. Equation (4) presents the equation for this
objective function. The main goal of this function is to
maximize the maximum peak flow reduction in the water-
shed across all sub-basins, or in other words minimize the
negative of the maximum peak flow reduction.

� � ��

PFR¼min �maxi;t peakflowi;t;baseline�peakflowi;t;alternative

(4)

where PFR is the peak flow reduction, i is the sub-basin ID, t is the
day in modeled time period T1eT2 years, peakflowi,t,baseline are the
baseline peak flows when no new conservation practice exists in
the watershed, and peakflowi,t,alternative are the modeled peak flow
when the alternative consisting of a specific combination of con-
servation practices exists in the watershed in sub-basin i, and time
t. The peak flows in equation (4) can be determined from simulated
daily flows at the outlet of every sub-basin (i.e. flowouti,t,case) for any
case (i.e. case ¼ baseline or case ¼ alternative) via equation (5)
below:
(iii) Sediments reduction function: Sediments reduction objec-
tive function (SR) is calculated as per equation (6). This
function represents the loss of fertile soil from the landscape,
across all sub-basins (N) and for the days in time period
T1eT2 years. The main goal of this function is to maximize
sediments reduction in all sub-basins, or, in other words,
minimize the negative of sediments reduction in all sub-
basins.

8 2

SR ¼ min

<
:�

XN
i¼1

4 Xlast day in T2

t¼first day in T1

�
Sedouti;t;baseline

� Sedouti;t;alternative
�35

9=
;

(6)

where i is the sub-basin ID, t is time in days (e.g., day 367),
Sedouti,t,baseline is the sediments load at the outlet of sub-basins for
the baseline calibrated model that does not have any new conser-
vation practices, and Sedouti,t,alternative is the sediments load at the
outlet of sub-basins when the WRESTORE generated alternative
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with a specific spatial combination of conservation practices is
simulated by the watershed model.

(iv) Nitrates reduction function: Nitrates reduction objective
function (NR) is calculated as per equation (7). This function
represents loss in nitrates via runoff, including those origi-
nating from the applied fertilizers, across all sub-basins (N)
and for the days in time period T1eT2 years. The main goal of
this function is to maximize nitrates reduction in all sub-
basins, or, in other words, minimize the negative of nitrates
reduction in all sub-basins.8 2
NR ¼ min
<
:�

XN
i¼1

4 Xlast day in T2

t¼first day in T1

�
Nitsouti;t;baseline

� Nitsouti;t;alternative
�35

9=
;

(7)

where i is the sub-basin ID, t is time in days (e.g., day 367), Nit-
souti,t,baseline is the nitrates load at the outlet of sub-basins for the
baseline calibrated model that does not have any new conservation
practices, and Nitsouti,t,alternative is the nitrates load at the outlet of
sub-basins when the WRESTORE generated alternative with a
specific spatial combination of conservation practices is simulated
by the watershed model.
2.2. Participatory optimization methodology

As mentioned above, the participatory optimization approach in
web-basedWRESTORE software is similar to the Interactive Genetic
Algorithm with Mixed Initiative Interaction (IGAMII) algorithm
proposed originally by Babbar-Sebens and Minsker (2012). We
describe here a summary of the IGAMII algorithm, and the reader is
advised to refer to their study for methodological details.

The IGAMII algorithm is a human-guided (or, human-centered)
optimization algorithm that engages with human users/stake-
holders in an iterative manner via visualization interfaces. In every
iteration, which is called an interaction session, both the decision
space of the alternatives (via maps) and the objective space of the
alternatives (via graphs) are displayed to the user. The user evalu-
ates multiple alternatives based on not only the quantitative ob-
jectives (i.e. mathematical functions of cost-benefit type goals) but
also based on the user's local subjective criteria or qualitative
knowledge not represented in the problem formulation. Once the
user has evaluated the alternatives, she/he can provide her/his
feedback on the quality of the alternative to the IGAMII's underly-
ing optimization algorithm via a user rating or human rank deter-
mined on a Likert type psychometric scale (e.g. “good”, “average”,
“bad”, etc.). The IGAMII's optimization algorithm uses this user
rating as an additional user-driven objective function (in addition to
economic and physical objectives discussed in Section 2.1) to
identify new alternatives that are similar to or better than the al-
ternatives liked by the user. The underlying optimization algorithm
is critical to enabling the search of new alternatives, and though the
IGAMII uses a multi-objective Genetic Algorithm called NSGA-II
(Deb et al., 2002), WRESTORE is not restricted by the type of
multi-objective optimization technique and has the capabilities to
Fig. 2. Interaction ses
select from a variety of other search approaches (e.g., Decentralized
Pursuit Learning Automata (Singh, 2013)).

Interaction sessions in IGAMII can be of three types (see Fig. 2
that shows the sequence of sessions in an example experiment):
introspection sessions, human-guided search (HS) sessions, and
automated search sessions. An introspection session is used for
improving the learning efficiency of the human user by enabling
the user to re-examine previously viewed and rated alternatives
that are stored in a case-based memory (Craw, 2003; Shi and Zhang,
2005), and re-assess her/his own thoughts, reasoning process,
emotions, biases, consciousness, and user ratings of these previ-
ously assessed alternatives. For example, Fig. 2 illustrates an IGAMII
experiment in which five introspection sessions occurred at
different times during the progress of the experiment. Each of the
human-guided search (HS) sessions is an iteration of the underlying
optimization technique (or, generation in the case when a Genetic
Algorithm is used as the search method in IGAMII), where new
alternatives created by the underlying optimization operators are
shown to the user. In IGAMII, when human-guided search is con-
ducted, a small population micro-genetic algorithm is used. Hence
the number of alternatives shown in a typical HS session is typically
equal to the population size of this micro-genetic algorithm. Every
alternative (or, the genetic algorithm chromosome) is evaluated in
its performance using a suite of mathematical objective functions
and process simulation models (e.g., the SWAT model of a water-
shed); and then the values of these performance-based objective
functions are displayed to the user, in addition to the alternative
decision variables using maps and graphs. The user provides the
feedback via the Likert scale-based user rating and then this user
rating is used by the micro-genetic algorithm operators to create
the next generation of new alternatives (or, new chromosomes in
the case of Genetic Algorithm). Hence, HS sessions are always
presented successively and are equal to the number of generations
of the micro-genetic algorithm. For example, in the progress of the
illustrative experiment shown in Fig. 2, since a micro-genetic al-
gorithmwith six generations was used, six HS sessions can be seen
between the various introspection sessions. The automated search
session (as seen in Fig. 2 between introspection sessions 4 and 5) is
the third type of session, which is a more computationally intensive
optimization run and is performed by replacing the human user
with a heuristic model of user ratings (or, a simulated decision maker
model). The main purpose of automated search is to minimize user
fatigue by replacing the human user with the simulated user, and
hence no visual interfaces are shown to the user when automated
search is running. Data on user ratings collected in earlier intro-
spection and HS sessions are generally used to create the person-
alized and heuristic simulated decision makermodels for every user.
For example, Babbar-Sebens and Minsker (2012) used fuzzy logic
models that related design parameters to user ratings, whereas in
WRESTORE we have included multiple linear and non-linear clas-
sification models, neural networks, fuzzy logic models, and deep
learning models (Singh, 2013) to create simulated decision maker
models.

In IGAMII, the sequence of interaction sessions (such as in Fig. 2)
is decided via a flexible mixed initiative interaction (Hearst, 1999)
strategy that monitors the individual user learning and simulated
decision maker model's accuracy to identify when human-guided
search should be conducted and when automated search should be
conducted. Monitoring and tracking user learning is an active topic
sions in IGAMII.
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of research in HumaneComputer Interaction and Cognitive Psy-
chology. While additional research investigations will enable
advanced tracking techniques to inform the mixed initiative
interaction strategies, WRESTORE currently uses the technique
proposed by Babbar-Sebens and Minsker (2012). This technique
monitors the trends in users' self-reported confidence in their user
ratings to identify how fast human users are learning by interacting
with the tool. In this manner, it is possible to use the human user
and the simulated user models for search/optimization when they
are most suitable for evaluation of alternatives. After every opti-
mization run, irrespective of whether it is human-guided search or
automated search, an introspection session is invoked to facilitate a
user's re-reflection of previously generated alternatives and
improve her/his own cognitive learning.

2.3. WRESTORE architecture

Fig. 3 is a schematic configuration of the various software and
hardware components used to support the web-based WRESTORE
tool. The architecture model in WRESTORE is based on services
provided by multiple servers (Garlan and Shaw, 1993). The remote
client users run their browser interfaces to access the various ser-
vices provided by the WRESTORE project website (http://wrestore.
iupui.edu) that resides on the Web Server. The web server interacts
with the Database Servers and the main WRESTORE Program
Server to access additional services on storing, communicating, and
processing user data and instructions.

Below is a description of the software services supported by the
various server components in Fig. 3.

(1) Web Server components: The Web Server hosts the project
website with static and dynamic components developed
using a combination of JavaScript, HTML, CSS, and PHP. The
static components of the website are primarily informational
and provide information on the tool and the watershed
application to the users. Multiple Google Maps Image APIs
have been included in the development of user friendly
visualization of spatial data. The dynamic components of the
Fig. 3. WRESTORE architecture (Arrows indicate data flow. Blue arrows are executed specific
guided search sessions, red arrows are executed specifically during automated search sessi
referred to the web version of this article.)
website enable the users to create their own user accounts,
and have real time access to the multiple services for starting
and running instances of their own participatory search/
optimization experiments.

(2) Database Server components: The Database Server runs
MySQL for managing multiple databases that store data for
users that have accounts on the website. This includes data
related to user profiles and data specific to an actual real-
time WRESTORE experiment run by the user. Every time a
user initiates a search experiment in WRESTORE, the data-
bases are accessed and updated by both the Web Server (via
front end interfaces) and by the underlying main WRESTORE
Program Server for processing. In this manner, all users have
access to all alternatives found in the multiple experiments
conducted by them over time.

(3) WRESTORE Program Server components: This is the main
application program (written in Java) that runs the IGAMII-
based participatory optimization methodology discussed
earlier in Section 2.2. Below is a brief discussion on the
various software components (or software managers) that
coordinate specific tasks to accomplish the overall search
methodology.
ally dur
ons). (Fo
i. IGAMII Kernel: This is the main program that starts or
stops instances of real-time search experiments for
multiple authorized users who have previously regis-
tered on the project website.

ii. User Program: Every time a new experiment is started
by the IGAMII Kernel, a new user program is initiated
that associates a registered user with the new experi-
ment, allocates database and computing resources to
this specific user, and initializes various IGAMII param-
eters and other related software components (i.e. MIM,
SM, OM, IM, IDM, SDMM, PE, HPCC, DBM, and VM listed
and explained below) for the user. Similarly, when the
experiment is completed, the user program de-allocates
resources assigned to this user.

iii. Email Manager (EmailM): This is initiated by the IGAMII
Kernel and handles the emailing system of the
ing introspection session, green arrows are executed specifically during human-
r interpretation of the references to color in this figure legend, the reader is

http://wrestore.iupui.edu
http://wrestore.iupui.edu
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WRESTORE tool, for notifying users every time session
data are available for viewing on the web interface. In
this manner, users don't have to be continuously inter-
acting in an ongoing experiment and can login to their
account at a later convenient time to complete the rating
of session alternatives.

iv. Mixed Initiative Manager (MIM): This component
manages the mixed initiative interaction strategy of the
IGAMII algorithm that was discussed earlier in Section
2.2.

v. Statistics Manager (SM): This conducts all the statistical
tests (e.g. Mann Kendall tests on confidence data) to
support the statistical analyses in mixed initiative inter-
action strategy in MIM.

vi. Optimization Manager (OM): Manages different types of
underlying optimization algorithms used in human-
guided search and automated search sessions. The
default algorithm currently used for search is based on
the Nondominated Sorting Genetic Algorithm (NSGA 2,
Deb et al., 2002).

vii. Introspection Manager (IM): Manages the multiple
introspection sessions in which previously found alter-
natives that reside in the case-based memory table of the
database are selected to be shown again to the user.

viii. Individual Design Manager (IDM): This works as an
intermediary to communicate each alternative and its
data to the other managers for processing and viewing,
during every session.

ix. Simulated DecisionMaker Manager (SDMM): Trains and
tests different simulated decision maker models to pre-
dict a human's user ratings. These models are based on
different Machine Learning algorithms. The best Ma-
chine Learning model is then chosen to perform auto-
mated search on behalf of the human.

x. Population Evaluator (PE): This manager receives alter-
natives from IDM, every time the alternatives need to be
evaluated for their quantitative objectives (e.g., eco-
nomic costs, peak flow reductions, etc.). These objec-
tives are evaluated using mathematical objective
functions that might require the use of process simula-
tion models. For example, in the current WRESTORE we
use the Soil and Water Assessment Tool (SWAT; Neitsch
et al., 2005) watershed model to evaluate impact of
conservation practices alternatives (as discussed in
Section 2.1). However, the framework is flexible for
incorporating other simulation models in future appli-
cations, if required. In order to run the simulation
models for each of the alternatives, the PE sends them to
the High Performance Computing Controller (HPCC)
that interacts with high performance computing re-
sources available to WRESTORE for running instances of
the simulation models. When automated search is going
on, the PE also interacts with the SDMM to obtain the
best machine learning model for evaluating the user
ratings of the alternatives.

xi. High Performance Computing Controller (HPCC): This
manager connects the WRESTORE program server to
available high performance computing infrastructure so
that simulation models runtime can be reduced and
users do not have a long waiting time. Multiple super-
computer, clusters and public cloud infrastructures can
be accessed via the HPCC, based on available computing
resources. In the past experiments with users, high
performance Windows Tempest cluster at Indiana Uni-
versity, a dedicated ESA Windows cluster (Dell
PowerEdge R620 servers with 112 nodes) at Oregon
State University, and Amazon Cloud (http://aws.amazon.
com/) have all been successfully used and tested.

xii. DB Manager (DBM): This manager collects all the pro-
cessed data from the IDM and returns them to the
Database servers so that they can then be sent to the
web servers for visualization. It manages all the data-
base connections and keeps track of their usage. Apart
from traditional JDBC connection, Hibernate has also
been implemented to operate the POJO (Plain Old Java
Object) feature of Java in DBM.
2.4. WRESTORE workflow and interfaces

The arrows in Fig. 3 indicate how the various components of the
WRESTORE systemwork when a user initiates a search experiment.
The entire system is based on JAVA RMI in asynchronous mode;
hence, data are transferred from one component to another in an
asynchronous manner. This allows multiple users to login at the
same time and run their participatory search experiments inde-
pendent of each other. For every user, the following workflow steps
are currently performed:

(1) Based on what practices (related to decision variables dis-
cussed in Section 2.1) a user wants to explore in her/his
watershed or sub-basin, and based on what goals (i.e. mea-
sures of performance discussed in Section 2.1) are important
for the user, the user logs into thewebsite and selects options
on the BMPs and goals via the interface in Fig. 4.

(2) When the user submits her/his options, the Web Server
passes that information to the database server (black arrows
in Fig. 3), which further sends a trigger notification to the
IGAMII Kernel in WRESTORE Program Server. The IGAMII
Kernel will initiate a search for every user; hence, multiple
instances of the User Program in Fig. 3 could be initiated at
any point in time based on how many users are using the
system. The managers EmailM, MIM, DBM, IDM, and HPCC
are initialized. Once initiated, MIM initializes the remaining
Managerse IM, OM, SDMM, SM, and PEe and then starts the
IGAMII search experiment for the user.

(3) When a new User Program is initiated, the user will go
throughmultiple interaction sessions, such as the ones shown
in the progress bar in Fig. 2. The search experiment in IGAMII,
however, always first begins with an introspection session (i.e.
Introspection 1 in Fig. 2).

(4) In the first introspection session, the MIMwill access the case-
based memory (located in the database) to select potential
watershed-scale alternatives found earlier in a different
search or by an offline optimization run that did not involve
any user ratings (e.g. a preliminary non-interactive optimi-
zation run proposed by Babbar-Sebens and Minsker, 2012).
The MIM then calls the IM, which sends these alternatives to
the web server (via the IDM, DBM, and the database server)
to show the alternatives to the user bymeans of a web-based
interface (Fig. 5). This same interface is also currently used
for all human-guided search sessions, and is being further
improved for better engagement with users. The User Pro-
gram will then trigger the EmailM to send an email to the
user whenever a session is available for viewing on the web
server.

After the user logs into the website, she/he is able to visualize
and compare the previously evaluated alternatives, which have
now been made available to her/him for viewing in the first

http://aws.amazon.com/
http://aws.amazon.com/
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introspection session. The user evaluates all the alternatives shown
by the interface based on her/his assessment of how BMPs are sited
and sized in the entire watershed and in their local sub-basins of
interest (viewed in the map space). The bar graphs on how alter-
natives perform with respect to quantitative goals (e.g., economic
costs, etc.) allow the user to also evaluate them based on the
Fig. 5. Visualization and feedba
performance of the alternatives in the entire watershed or in their
local sub-basins of interest. The user provides feedback on her/his
assessment of the quality of the alternative via user ratings, and
these data along with typical interface usability data, are collected
and sent back from theweb server to the database for archiving and
use by WRESTORE's software managers.
ck interface in WRESTORE.
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(5) After the introspection session is over, the MIM calls the SM to
calculate multiple statistics on the usability data and for the
mixed initiative interaction strategy. The MIM then invokes a
call to OM to begin one of the two types of search sessions.
For both HS and automated types of search sessions, the
underlying optimization algorithm is initialized in a manner
similar to that proposed and tested by Babbar-Sebens and
Minsker (2012). For example, if NSGA2 is used, then 20% of
the starting population is selected from the user's case-based
memory and 80% are randomly created. Additionally, if MIM
decides to start human-guided search, then the OM will use
NSGA2 as a micro-GA with a small population size and few
generations to minimize user fatigue. Whereas, if MIM de-
cides to start automated search then the OM will use NSGA2
with larger population size and generations.

(6) The OM sends the alternatives proposed by underlying
optimization algorithm's current iteration (or, generation in
the case of NSGA2) to IDM, which communicates them to PE
for numerical evaluation of the quantitative objective func-
tions (or, performance goals as seen in bar graphs of Fig. 5)
and the user ratings.

a. To evaluate the quantitative objective functions, the PE

will invoke the HPCC in order to run the process simula-
tion models (i.e. watershed model of the application site)
with different conservation practices (described in Section
2.1) activated in the sub-basins, as specified by the alter-
natives. Since this simulation of each alternative could
take multiple minutes to run, the HPCC runs a job
scheduler to efficiently distribute the simulation jobs to
different computing nodes in real-time. If computing
nodes are not free, then the simulation jobs for that user
will be put in the waiting queue. Once the simulations are
over, the HPCC returns the simulation results back to the
PE for calculating necessary objective function values from
the output files of the simulation models (as explained in
Section 2.1).

b. If automated search is currently going on, then PE will also
call the SDMM to invoke a suitable machine learning
model that mimics the user to provide estimates of user
ratings.
(7) Once the PE has evaluated all the alternatives in one iteration
(which is also the session), the data on evaluated quantitative
objective functions are sent to IDM that updates the data on
alternatives. If automated search is currently going on, then
the IDM, instead of sending the alternative to DBM, will send
the data back to OM to start the next iteration (or, genera-
tion). However, in case of introspection sessions and human
guided search sessions the IDM will send the data on alter-
natives to DBM, which will send the alternatives to the
Database Server. The Database Server will then send a trig-
gering message to theWeb Server. At this point in time, if the
introspection and human-guided search sessions are going on,
then the IDM will also trigger the User Program (via the
MIM) to send a notification email to user via the EmailM.

(8) For introspection sessions and human guided search sessions,
the Web Server receives the trigger message for new
incoming data, and then displays this new data on the al-
ternatives into the visualization interface (Fig. 5). The user
provides her/his feedback, and the Web Server then informs
the availability of the user feedback data to the DBM, which
passes the data back to IDM. Once IDM receives the new data,
if the user had just finished an HS session, the data are then
sent to the OM to start the next iteration of HS session (or,
human-guided optimization iteration). However, if an
introspection session just finished, then a message is sent to
MIM to initiate a new set of HS sessions. For both human-
guided search and automated search if the maximum number
or iterations (or, sessions) have not been completed, then the
steps (6)e(8) will be repeated for each of the iterations of the
underlying optimization algorithm. Once the HS sessions/
iterations (e.g., HS1 to HS6 in Fig. 2) are completed, the MIM
will use the SM and SDMM to update the statistics and the
simulated decision maker models. When either all of human-
guided search sessions or automated search session end, the
program moves to an introspection session in step (9).

(9) In this step, an introspection session will be initiated by the
MIM (e.g., Introspection sessions 2, 3, 4, and 5 seen in Fig. 2).
The MIM will access the case-based memory (located in
database) to select alternatives found earlier by the recent
human-guided or automated searches. The IM is called, which
sends these selected alternatives to the Web Server (via the
IDM, DBM, and database servers) to show the alternatives to
the user via the interface (Fig. 5). The User Program will
trigger the EmailM to send an email to the user whenever
this session is available for viewing on the web server. Once
the user has viewed and submitted her/his feedback, the data
will move back to the database servers from the web server,
and step (5) will be invoked again until the last introspection
session, as specified in experiment settings, has been
reached.
2.5. WRESTORE deployment for multiuser collaborative design

ImplementingWRESTORE in awatershed involves three phases:
pre-processing, real-time participatory design experiments, and
post-processing. Currently, WRESTORE has been implemented, and
tested for user learning, and multi-users engagement issues, and
overall tool improvements at the test site of Eagle CreekWatershed,
Indiana. But the flexible architecture of WRESTORE allows other
watershed groups, in the future, to include their own simulation
models, design parameters, and data related to their region. Fig. 6
provides a synopsis of the three phases.

2.5.1. Phase I pre-processing phase
In this phase, a watershed community's agency personnel or

stakeholder council group/alliance is expected to first engage with
the various parties of interest to identify conservation practices of
interest and specific sub-areas/sub-basins in their watershed
where potential sites for these practices could exist. While the
nature of the engagement process is beyond the scope of this
article, it is expected that a shared vision of relevant goals and
constraints would be developed via this engagement process. The
watershed community is expected to then develop an appropriate
process simulation model of their study area, preferably via
participatory modeling approaches (e.g. Palmer, 1998; Welp, 2001;
Van Asselt Marjolein and Rijkens-Klomp, 2002). We have currently
used the SWAT model to simulate effectiveness of new conserva-
tion practices in our test site, but WRESTORE's software architec-
ture is not constrained by a specific hydrology or water quality
model. Once a simulation model has been developed and cali-
brated, the watershed group leaders can then submit the model
files to the WRESTORE administrative team for setting up a
WRESTORE project for their watershed. Copies of the folders of the
simulation model input/output/executable files are saved on the
WRESTORE program server, fromwhere the programmakes copies
and saves them on to the HPC Infrastructure nodes whenever user
experiments need to be conducted. Besides the simulation models,
various GIS files identifying the watershed boundaries, sub-basins,
and stream network are also required for the interface. These GIS



Fig. 6. Deployment for multi-user web-based collaborative experiments.
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data are stored into Google Fusion Tables so that Google Maps API
can be used in the interface. We are currently in the process of
developing a separate interface that will enable watershed group
leaders to automate this setup process of site data and models for
any watershed via the web.

2.5.2. Phase II real-time participatory design experiments
Once the WRESTORE project for the application watershed has

been setup, it is then available for release to the general commu-
nity. There are multiple approaches via which watershed groups
could engage their stakeholders in conducting web-based, multi-
user participatory optimization experiments in WRESTORE. Here,
we present two of the approaches that have been tested.

i. Asynchronous multi-user experiments: In this type of experiment
(see graphic (4a) in Fig. 6), every user can initiate her/his own
human-computer collaborative search for exploring spatial
implementation of conservation practices that are of interest to
her/him. Hence, multiple instances of User Program will be
generated in this experiment type. When a user logs in and
begins the WRESTORE workflow (discussed earlier in Section
2.4), she/he can choose from a set of available BMPs and goals
for her/his watershed site. Multiple users can begin their ex-
periments independent of others, and hence can asynchro-
nously explore the effect of different types and combinations of
conservation practices in the watershed. Since these experi-
ments are conducted asynchronously (in a parallel fashion),
WRESTORE currently does not assume a user's sub-basins of
interest in advance, and, therefore, presumes that BMPs chosen
(in Fig. 6 interface) by a user are applicable to all sub-basins in
the watershed specified by the watershed group in Phase 1.
Additionally, because of this assumption WRESTORE uses the
values of the quantitative goals at the watershed scale (in Fig. 4
interface) as the objective functions for the underlying optimi-
zation algorithm. The future interface of WRESTORE will enable
more detailed settings for individual users, where users will be
able to declare a narrower sub-region of interest. The user-
feedback-driven search and the learning process in the WRES-
TORE's underlying algorithms are, however, customized to
individual participating users. One advantage of this kind of
asynchronous engagement with multiple users is that it pro-
vides users the flexibility to explore alternatives at a time that
suits them the most, without being dependent on the feedback
of others.

ii. Synchronous multi-user experiments: In this type of experiment
(see graphic (4b) in Fig. 6), multiple users participate in a
democratic human-computer collaborative search. A Demo-
cratic User Program is initiated that generates a set of alterna-
tives that are shown to all users. Hence, synchronous
participation is critical for this type of engagement setting so
that the search process can advance once all feedbacks are ob-
tained. Once all users have provided their user ratings, the ma-
jority user rating will be used as the final rating of the
alternatives. The human-guided search, automated search and the
learning process in WRESTORE's underlying algorithms are,
therefore, customized to the majority opinion in the user
community.
2.5.3. Phase III post-processing
Once user experiments are finished, alternatives generated by

the multiple users can then be post-processed for similarities and
dissimilarities in spatial plans of practices (i.e. alternatives) liked or
disliked by the users. Additionally, simulated decision maker
models generated by the WRESTORE program can be processed for
identifying underlying parameters and variables that best explain
the user ratings. Data collected via the interface on users can also be
post-processed to understand how each participant engaged with
the interface and whether any detectable learning or changes in
opinions were observed. Once this post-processing is completed,
the analyses can be released to the user community for decision
making and for identifying how individual user's behavioral factors
affected identification of promising alternatives.

3. Software tests and discussion

The WRESTORE software is currently being tested for the study
site of Eagle Creek Watershed, Indiana, (Fig. 7) and with different



Fig. 7. Eagle Creek Watershed sub-basins (a) and sub-basins of interest to individual participants (b).
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types of users e i.e., university undergraduate and graduate stu-
dents (from both Indiana University and Oregon State University),
state agency personnel, and watershed stakeholders. While
detailed research results with the different types of participants
(including watershed stakeholders) will be provided in upcoming
publications, here we present results on software testing that used
student users to demonstrate the benefits of the two types of real-
time, web-based participatory optimization approaches discussed
above. In the test plan, five student users (Participant IDs 2, 3, 4, 5,
and 6) with background in Water Resources were asked to do role-
playing by assuming that they represented one of the colored
groups of sub-basins in Fig. 7b and that they were interested in the
suitability of BMPs only in their local sub-basins group (e.g.,
Participant 2 was asked to focus on only red colored sub-basins).
The gray sub-basins in Fig. 7a indicate all the sub-basins where
new BMPs are being considered for potential peak flow, nitrate
reduction, and sediment reduction benefits. As mentioned earlier,
the SWAT model developed and calibrated for this watershed
(Piemonti et al., 2013) was used to simulate baseline runoff and
water quality conditions for the period of 2005e2008, and simulate
effect of conservation practices on runoff and water quality for the
same period.

For the test experiment, the participants were asked to consider
cover crops and filter strips as potential BMPs for this watershed,
and the alternatives for search experiments consisted of how these
two practices were designed in the 108 gray sub-basins in Fig. 7a.
For cover crops, decisions were coded as binary variables, so when
the practice was used in a specific sub-basin the variable had a
value of 1 (and, 0 otherwise). For filter strips, the width of the strip
was used as a decision variable and was allowed to vary from 0 to
5 m. See Section 2.1 and Piemonti et al. (2013) for more details on
how these decisions were encoded as practices into the SWAT
model. The optimization algorithm used quantitative objective
functions on maximizing peak flow reductions, minimizing costs,
maximizing sediment reduction, and maximizing nitrate re-
ductions, calculated at the watershed scale using the equations
provided by Piemonti et al. (2013). To represent local subjective
criteria, the participants were asked to provide user ratings (“I like
it”, “Neutral”, and “I don't like it”) for each alternative based on the
design and performance of alternatives in their respective local
areas. To help participants assess performance of practices in local
areas, the same objective function equations in Piemonti et al.
(2013) were also calculated for each local sub-basins. The partici-
pants, first, participated in the asynchronous user experiments, and
then after five months participated in the synchronous user
experiment. In each of these experiments, the five participants
were made to go from Introspection 1 session to Introspection 4
session in Fig. 2, with six human-guided search sessions between
every two introspection sessions. In introspection 1, a set of alter-
natives found via a preliminary non-interactive optimization were
shown to all the users so that they all had the same starting point
for comparison purposes. This preliminary non-interactive opti-
mization was conducted using the NSGA 2 algorithm with the four
quantitative objective functions. Since each SWAT simulation
model took about 10 min to run, with the HPC cluster (combination
of Tempest Cluster at Indiana University and ESA cluster in Oregon
State University), the total computational time for each of the ex-
periments took about 180 min. Since every user had individual
variability on how much time they spent viewing and comparing
alternatives on the web-interface, the total clock time for the
experiment was determined by the user's schedule and varied from
one to three days of engagement across users.

The alternatives found by the participants in the two types of
multi-user experiments were compared with each other in



Fig. 8. Percent of alternatives with the different user ratings in asynchronous and synchronous multi-user experiments.
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objective space and in decision space. Fig. 8 gives an overview of
the percent of alternatives with different user ratings that the par-
ticipants found. It can be seen that while for some participants (ID
2, 4, and 5) the percent of alternatives rated “I like it” increased
when the synchronous user experiment was performed, for others
(participant IDs 3 and 6) the percent of “I Like it” alternatives
actually decreased. Hence, either of the two engagement methods
can be effective in helping users find alternatives that they like. The
democratic user's user rating was based on themajority rating of an
alternative rated by the individual participants. Hence, even though
individually Participants 2, 4, and 5 found more “I like it” alterna-
tives, the overall democratic rating was affected by other partici-
pants and led to fewer percent of alternatives that were rated “I like
it”.

Fig. 9 compares the post-processed alternatives in the quanti-
tative objective function space (only peak flow reduction versus
cost are shown), and further demonstrates the usefulness of
WRESTORE. Figure 9aee shows the alternatives found by partici-
pants when they asynchronously conducted the user experiment,
and Figure 9f shows the democratic rating of the alternatives found
during the synchronous collaborative experiment. Even for just
these five users, multiple similarities and dissimilarities can be
observed in the alternatives generated. For example, all partici-
pants agree that not all alternatives found by the non-interactive
optimization (shown to them in Introspection 1) are above
average or of user rating “I like it”. In fact, Participants 4 and 5 found
the majority of these non-interactive optimization alternatives to
be of the type “I do not like it”. Second, since WRESTORE custom-
ized the search to the user's feedback, different participants found
“I like it” alternatives in different regions of the quantitative
objective space, which did not necessarily coincide with the alter-
natives found by the non-interactive optimization. Participant 2
found a range of “I like it” alternatives that varied from high peak
flow reductions with low costs to lower peak flow reduction with
higher costs. Note that negative costs indicate economic revenue.
Participant 3, 5, 6, and democratic user found their “I like it” al-
ternatives in two visibly separated clustered regions. Participant 4
had a few number of alternatives in the region of lower peak flow
reduction with higher costs. These results allow visualization of
regions in quantitative objective function space where users might
be willing to accept or reject alternatives. A typical non-interactive
optimization that does not have the ability to include participant's
preferences and perceptions via her/his user rating would typically
reject many of these “I like it” alternatives.

Alternatives generated with the help of WRESTORE can also be
used to further identify patterns in the decision space of the al-
ternatives, and identify decisions that have higher chances of
acceptability based on how the users perceived and rated them.
Fig. 10 shows statistics on the decision variables related to cover
crops at the 108 candidate sub-basins (X axis) where new BMPs can



Fig. 9. Alternatives with different user ratings found by participants and their performance in the quantitative objective function space.
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be placed. Since, cover crops are coded as binary decisions in the
search algorithm, all “I like it” rated alternatives found by every
participant were sorted to find out the percent of alternatives that
had cover crops (i.e. decision variable value¼ 1) in the specific sub-
basin. The Y axes in Fig. 10 indicate this percent value as a proba-
bility. As visible from the two graphs in Fig. 10, there is a large
variability in the probability of cover crops in the 108 sub-basins (as
seen by large scatter of probability values along Y axis for every sub-
basin), when the participants are allowed to conduct their own
asynchronous search. When participants synchronously conduct
the search using the democratic user rating procedure their overall
disagreements in the probability of cover crops in the 108 sub-
basins is reduced (as seen by a smaller scatter of probability values
along Y axis). The average variability (where, variabilitysub-
basin ¼ maximum probabilitysub-basin-minimum probabilitysub-basin)
in the probability of cover crops proposed by the participants was
calculated to be 0.31 for asynchronous experiment and 0.19 for
synchronous experiment. This indicates that the democratic user
rating is more effective in finding alternatives that preserve the
majority opinions on the values of the decision variables.



Fig. 10. Probabilities of cover crops implemented in the various sub-basins of “I like it” alternatives.

Fig. 11. Mode of filter strip widths implemented in the various sub-basins of “I like it” alternatives.
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Fig. 11 shows a similar trend in the statistics of the decision
variables related to filter strips at the 108 candidate sub-basins (X
axis). For filter strips, themode of the filter strip widths at each sub-
basin was calculated, for all the “I like it” alternatives found by
participants. The mode at every sub-basin represents the majority
width value proposed by the “I like it” alternatives. The average
disagreements in the mode values across all the sub-basins also
decreased from 1.5 m (for asynchronous experiment) to 0.85 m (for
synchronous experiment). This provides additional evidence in the
benefit of conducting WRESTORE experiments in the synchronous
mode, when increased agreement in the search of decision variable
values is required.

4. Conclusions and future developments

With the ongoing advances in World Wide Web technologies
and environments, use of online communities for collaboration and
generation of solutions to real-world problems has become inevi-
table. The WRESTORE system provides an innovative and
community-based approach for designing conservation practices
on landscapes via web-based participation. Stakeholder groups and
watershed planners have the potential to participate via the web to
evaluate scenarios, optimize the scenarios, and generate custom-
ized alternatives that capture the communities' difficult-to-
quantify criteria and concerns.

There are multiple strength and limitations of WRESTORE,
which are being/will be addressed when future developments are
released to the community:

(i) While WRESTORE enables users to test the effectiveness of
conservation practices using dynamic models, it assumes
that such a model is readily available and the community has
already gone through the model development and calibra-
tion phase. Additionally, the underlying code and
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architecture of WRESTORE is general enough to enable
insertion of any other specific model that a watershed
community might be interested in using, beyond the SWAT
model that was used for the case study in this article. An
interface for a community to select their specific simulation
models and set up variables is currently being built and will
be tested and demonstrated in future publications.

(ii) The implementation of WRESTORE is limited by the amount
of time and computational resources taken by the embedded
watershed model. Currently, the WRESTORE framework can
be linked with the available research clusters and public
Cloud to minimize time taken by simulation models; addi-
tional research for overcoming this barrier and decreasing
user waiting time between sessions is also being conducted.
For example, embedding faster surrogate models that can
approximate watershed models is a potential solution to this
problem.

(iii) For improving user engagement we are also conducting
software usability tests and user studies with WRESTORE.
These results will be used to include multiple improvements
in future versions of the WRESTORE interfaces, including (a)
a more game-like environment for users to directly modify
alternatives at field scale and influence alternatives proposed
by others, (b) enable users to compare alternatives with
respect to climate change projections and other watershed
impacts (e.g., impacts on habitat of indicator ecological
species), and (c) enablewatershed groups to create their own
WRESTORE projects via the web-interface, etc.

(iv) One of the challenges in using such web-based design en-
vironments is the protection of privacy when users explore
the alternatives. Since WRESTORE is a research tool at this
point in time, all data shared by users are kept confidential
and not shared with anyone else beyond the research team
approved by the university's Institutional Review Board.
Additionally when user data are utilized by the WRESTORE
architecture, identifiers are removed from the data to
maintain privacy of specific users. In future developments we
plan to provide adaptive privacy settings to users to allow
them to control the visibility of their participation.
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