Physics-Informed Machine Learning for SWAT-Based Nutrient Prediction

Mohamed Fawzy Mahmoud¹, Mazdak Arabi¹

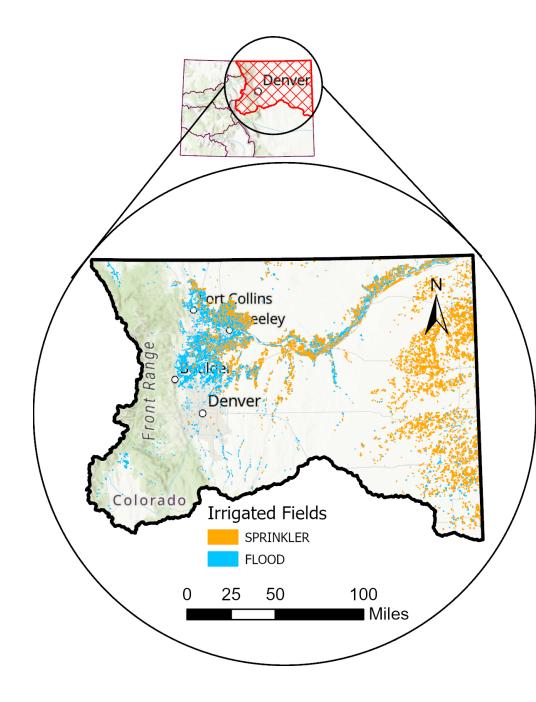
International SWAT Conference in Colorado, USA 24 October 2025

Introduction

Background & Motivation

The Power and Challenge of Field -Scale SWAT Modeling

- Field-scale SWAT 2012 for water quality assessments
- Improved auto-irrigation subroutine (Chen et al., 2017; Jobin, 2018)
- One field is represented as a single HRU SWAT model
- ~70K irrigated crop fields across Colorado river basins
- Goal: Robust modeling for web-based decision support
- Challenge: Computational scalability



The Core Problem The Scalability Bottleneck

- SWAT is process-based but is computationally slow for large scale computations at the state or regional levels.
- Millions of model simulation are needed to represent thousands of fields and several management scenarios over multi-decade simulation periods.
- Near real-time web applications need fast results.
- Current workflow limits practical deployment.

Exploring Potential Solutions Finding the Right Path to a Solution

Option 1: Standard Machine Learning (ML)

- ✓ Fast predictions
- X "Black box" physically implausible results
- X No guarantee of mass balance

Option 2: Knowledge -Guided ML (KGML)

- ✓ Speed of ML+ Scientific integrity
- ✓ Enforces physical rules during training
- ✓ "Glass box" fast, accurate, trustworthy

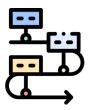
The KGML-SWAT Emulator

A Hybrid Approach for the Best of Both Worlds

Penalize violations of core physical principles.
Enforces process relationships.

Unified Multi - Scenario Architecture

One model handles all management practices.
Learns tillage & irrigation effects directly.

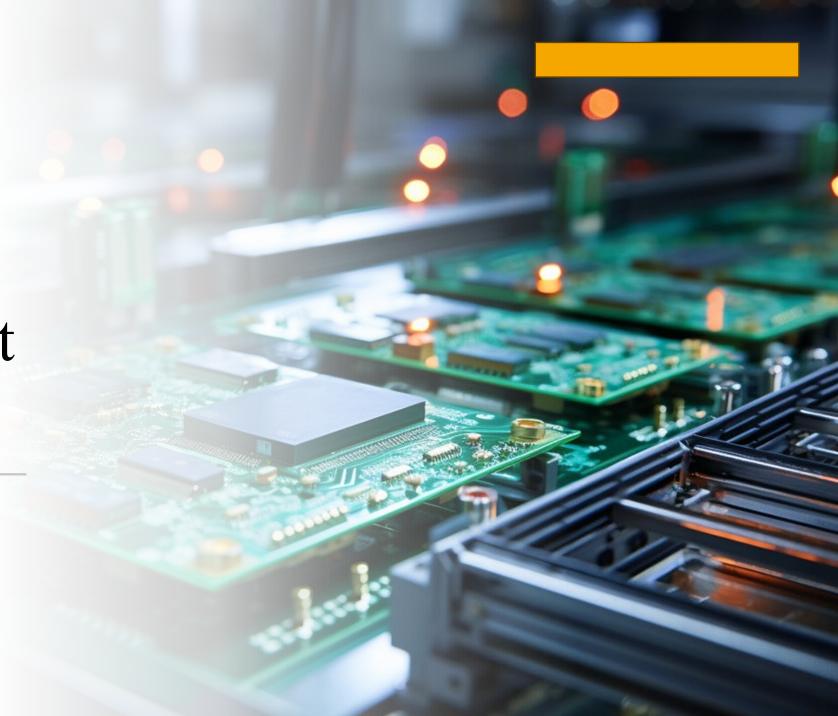


Three-Phase Training Strategy

Gradual physics constraint introduction.

Prevents training instability.

Model
Development
& Training



The Foundation

Training on a Rich SWAT Simulation Dataset

1.56M+

Field -Year Records

~21,000

Agricultural fields in the South Platte River Basin

18

Years of data (2003-2020)

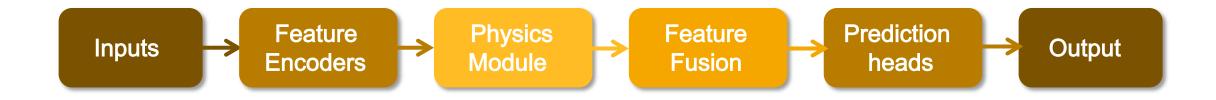
4

Scenario management combinations (Tillage/irrigation)

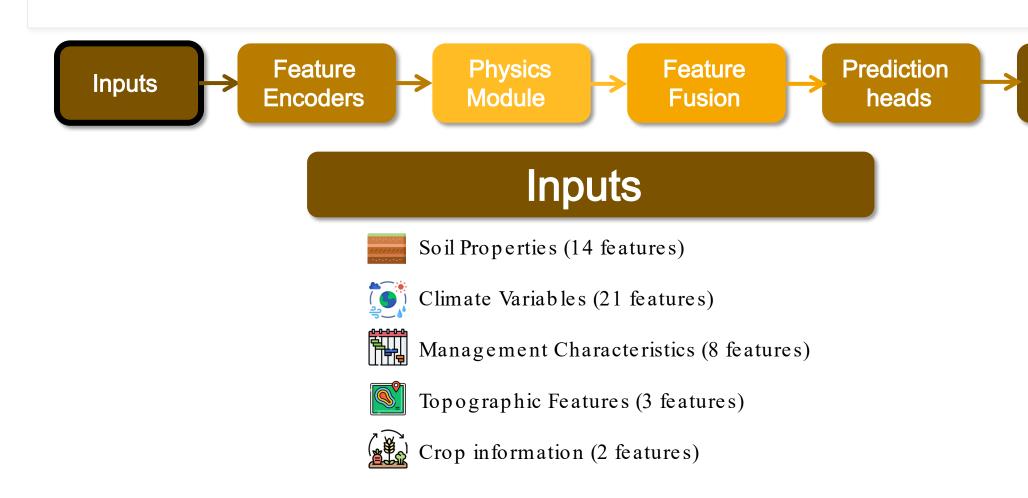
Validation Strategy

Spatial Cross-Validation, holding out entire fields to ensure the model generalizes to new locations

A Model That Thinks Like a Hydrologist

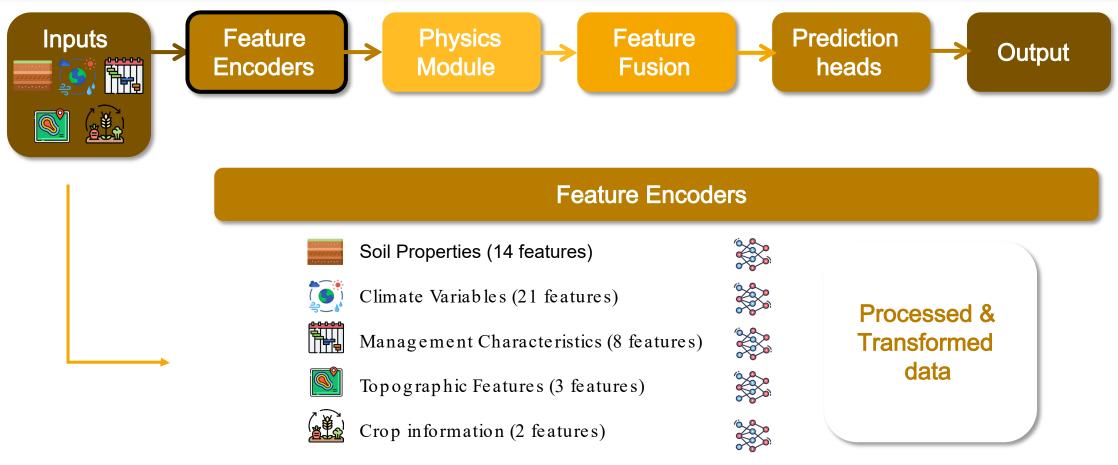


A Model That Thinks Like a Hydrologist

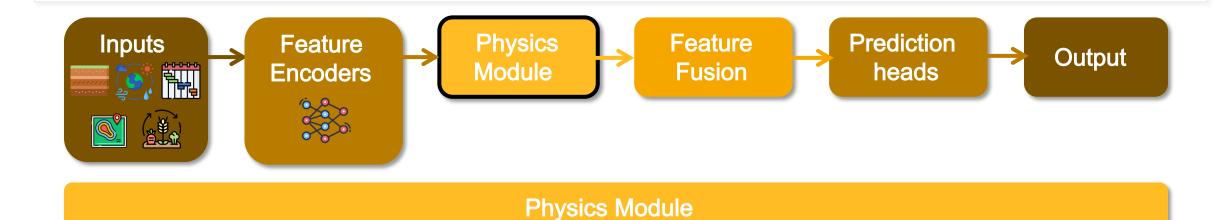


Output

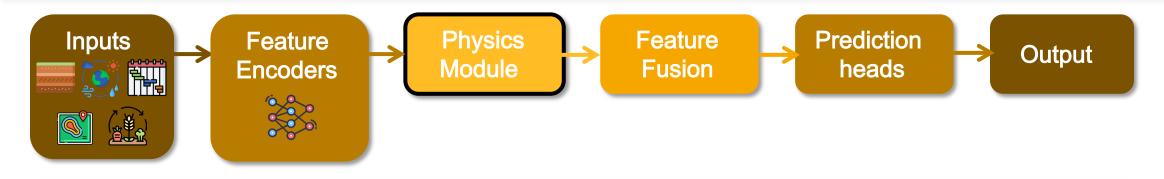
A Model That Thinks Like a Hydrologist



A Model That Thinks Like a Hydrologist



A Model That Thinks Like a Hydrologist



Physics Module

Precipitation

$$Runof f_{rain} = \frac{(P - I_a)^2}{P + 0.8 * S}$$

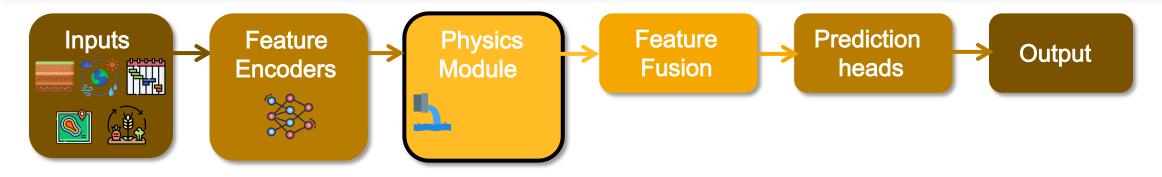
P is precipitation. Initial abstraction (Ia) & Retention parameter (S) are calculated based in the CN

Irrigation

 $IrrigationNeed = CropWaterReq - PrecipGrowingSeason \\ Runoff_{irr} = IrrigationNeed * IrrigationRatio$

Irrigation ratio is based on irrigation type (Flood/Sprinkler) and efficiency (Management data)

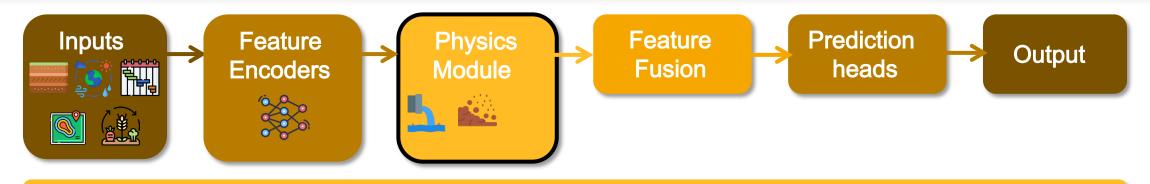
A Model That Thinks Like a Hydrologist



Physics Module

- R is the runoff erosivity factor (calculated from runoff volume and peak flow)
- Kis the soil erodibility factor (learned from soil texture, organic matter, and structure)
- LS is the topographic factor (learned from slope steepness, as slope length is constant at 50m)
- C is the cover and management factor (learned from crop type, tillage system, and residue management)
- P is the support practice factor (constant at 1.0 in this dataset)

A Model That Thinks Like a Hydrologist

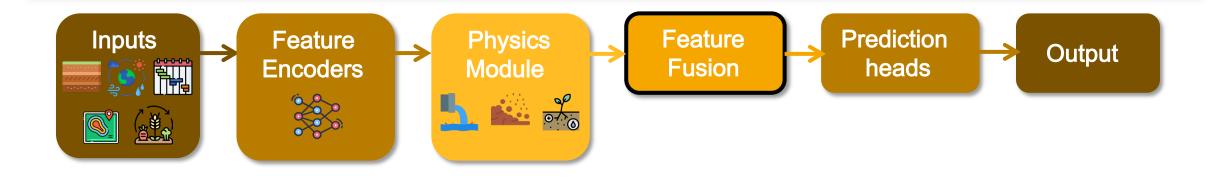


Physics Module

$Available_N = Fertilizer_N + Residue_N + Mineralization_N$

- Mineralization rates are temperature and moisture dependent, with higher rates under warm, moist conditions.
- The model learns that tillage enhances mineralization through increased soil aeration and residue incorporation.
- Maximum mineralization is constrained to 3% of soil organic nitrogen per year based on established literature values.

A Model That Thinks Like a Hydrologist



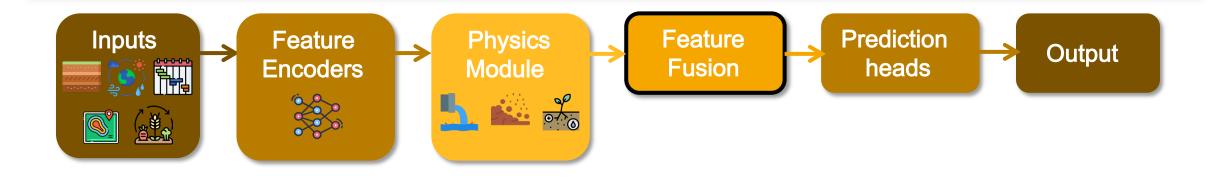
Feature Fusion

$$L_{total} = L_{prediction} + \lambda_{mass} * L_{mass} + \lambda_{process} * L_{process} + \lambda_{bounds} * L_{bounds}$$

Prediction Loss

Mean Square Error in predictions

A Model That Thinks Like a Hydrologist



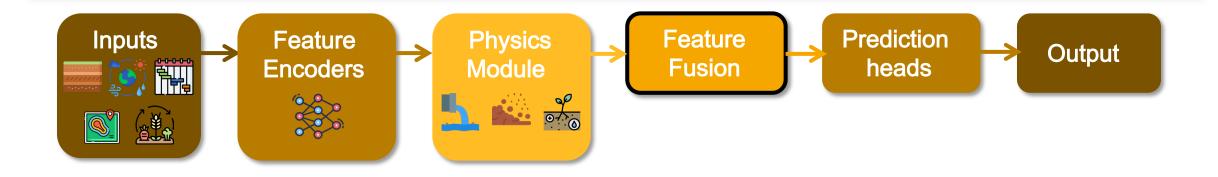
Feature Fusion

$$L_{total} = L_{prediction} + \lambda_{mass} * L_{mass} + \lambda_{process} * L_{process} + \lambda_{bounds} * L_{bounds}$$

Mass balance Constraints

 $Max_{TN} = Fertilizer_N + Residue_N + 0.03 * Soil_{OrgN}$

A Model That Thinks Like a Hydrologist



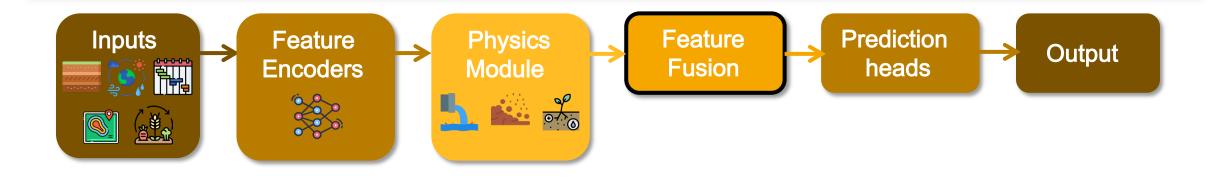
Feature Fusion

$$L_{total} = L_{prediction} + \lambda_{mass} * L_{mass} + \lambda_{process} * L_{process} + \lambda_{bounds} * L_{bounds}$$

Process Relationship Constraints

Concentration (TN/Runoff) within realistic range Correlation (TN, Erosion) ≥ 0.9 Lower Erosion in reduced tillage, lower runoff in sprinkler irrigation

A Model That Thinks Like a Hydrologist



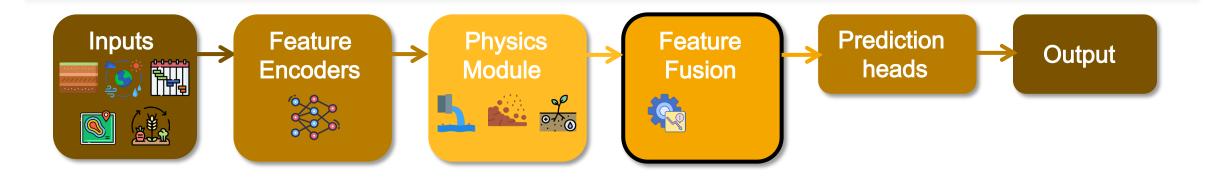
Feature Fusion

$$L_{total} = L_{prediction} + \lambda_{mass} * L_{mass} + \lambda_{process} * L_{process} + \lambda_{bounds} * L_{bounds}$$

Physical Bounds Constraints

Total load per hectare is within realistic range

A Model That Thinks Like a Hydrologist



Feature Fusion

Phase 1

Pure Machine Learning (Epochs 1-20)

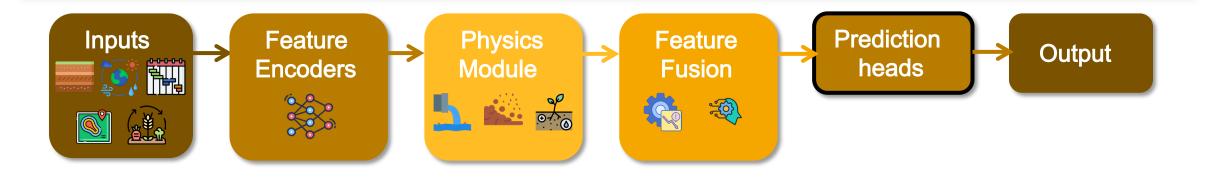
Phase 2

Gradual Physics Integration (Epochs 21-50)

Phase 3

Full Physics Constraints (Epochs 51-150)

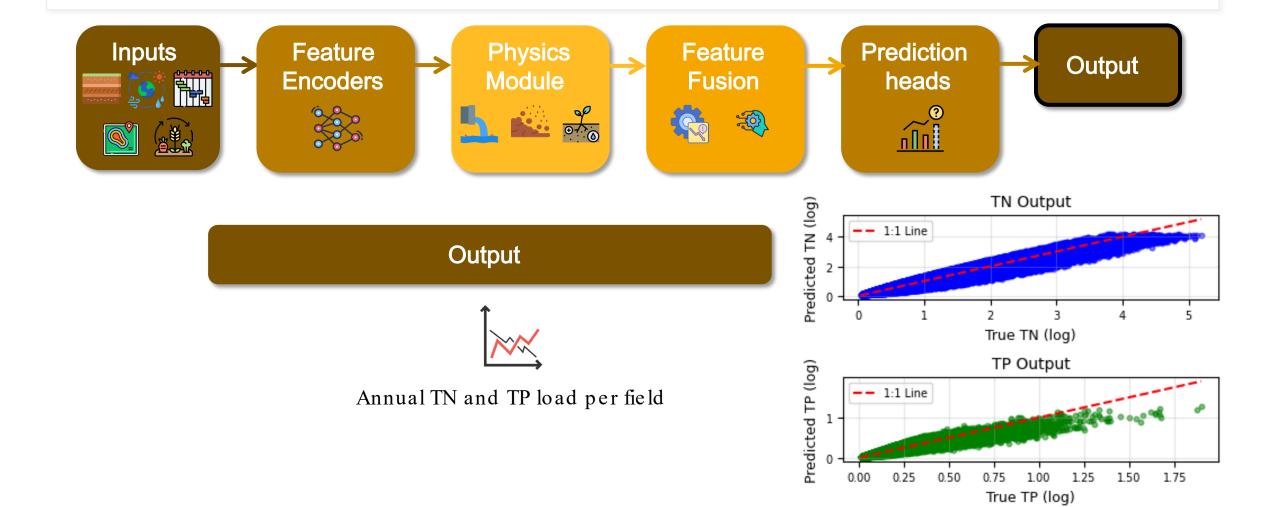
A Model That Thinks Like a Hydrologist



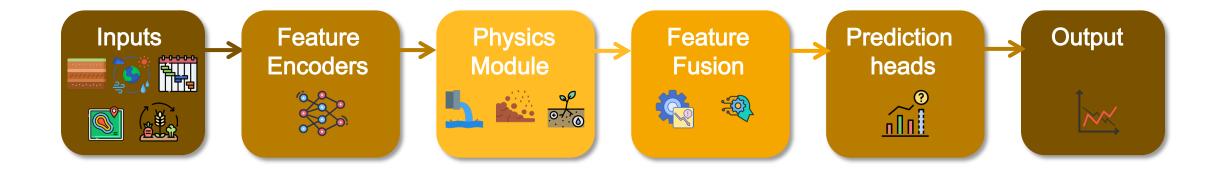
Prediction heads

Total Nitrogen Prediction Total Phosphorus Prediction

A Model That Thinks Like a Hydrologist



A Model That Thinks Like a Hydrologist



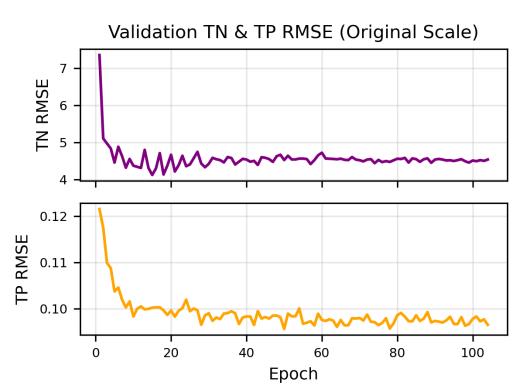
Model Performance

Performance at a Glance Watching the Model Learn

Model validation shows high accuracy, with Nash-Sutcliffe Efficiency values stabilizing near 0.88 for TN and 0.85 for TP

NSE - Validation 0.88 0.86 0.84 US 0.82 0.80 0.78 Val TN 0.76 Val TP 20 40 60 80 100 Epoch

Model error (RMSE) rapidly minimizes and stabilizes by epoch 50, reaching ~ 4.5 for TN and ~ 0.1 for TP.



Performance at a Glance Watching the Model Learn

The three-phase training, pure ML loss increase by epoch 20, ramping Mass Weight to 1.5 and Process Weight to 0.5 between epochs 20-50.

Validation Loss & Constraint Weights

SS 0.16

O.12

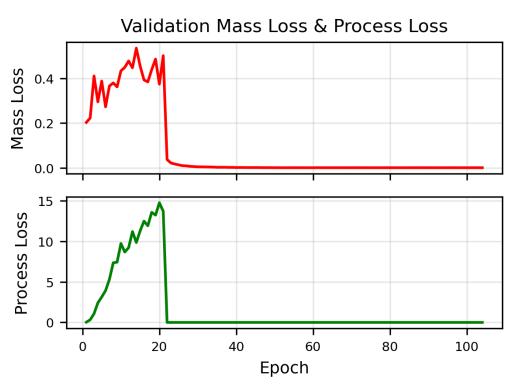
Mass Weight
Process Weight

O.5

O 20 40 60 80 100

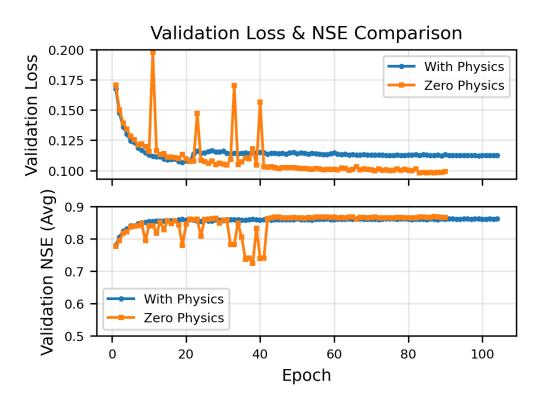
Epoch

As physics constraints are applied at epoch 20, the model was initially violating physics, but it rapidly corrects after activating the constraints

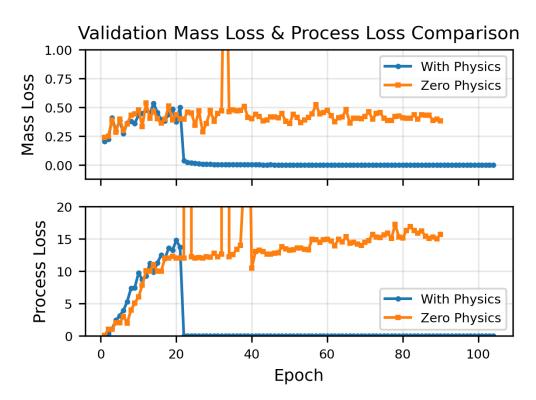


Performance at a Glance Watching the Model Learn

Both models achieve a high avg. NSE of ~ 0.9 , with the zero physics model has slightly lower validation loss



The "Zero Physics" model consistently violates physics (Mass Loss ~ 0.4 , Process Loss > 15), while the "With Physics" model learns to force both physics losses to 0.



Breaking the Bottleneck: A Time & Reliability Comparison

From Days to Minutes: The End User Prospective

Setup

x4 scenarios 1000 fields

Collect data (web/user), create input files

1-2 Hours

Execution

Run SWAT fieldby-field for 20 years

20 Hours

Post-Process

Aggregate results from all 4000 outputs

0.5 Hours

Final Outcome

Prone to errors from complex input files, requiring manual debugging.

Total Time: ∼1 Day

x4 scenarios 1000 fields KGML

Prepare a single input data table

5 Minutes

Make 80,000 predictions (1000x4x20)

10 Seconds

Output is already aggregated

0 Seconds

Robust & stable; eliminates input file errors

Total Time: ∼5 Minutes

Conclusions

Key Takeaways

- KGML emulator solves the SWAT bottleneck, enabling rapid predictions for large -scale, web-based decision support.
- By incorporating physical laws, the model produces scientifically reliable and trustworthy results.
- This "glass box" method makes AI a robust and defensible tool for agricultural and environmental modeling.

Thank you

Mohamed Fawzy Mahmoud

M.Fawzy.Mahmoud@colostate.edu

