PhysicsInformed Machine

[earning for SWAT-Based
Nutrient Prediction

International SWAT Conference in Colorado, USA
24 October 2025

'Department of Civil and Environmental Engineering, Colorado State University



Introduction




Background & Motivation

* Field-scale SWAT 2012 for water quality assessments

* Improved auto-irrigation subroutine (Chen etal.,2017;
Jobin, 2018)

* One field is represented as a single HRU SWAT model
« ~70Kirrigated crop fields across Colorado river basins
« Goal: Robust modeling for web-based decision support

« Challenge: Computational scalability
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The Core Problem

« SWAT s process-based butis computationally slow for
large scale computations at the state orregional levels.

* Millions ofmodel simulation are needed to represent
thousands of fields and several management scenarios
over multi-decade simulation periods.

* Nearreal-time web applications need fast results.

* Current workflow limits practical deployment.




Exploring Potential Solutions

Finding the Right Path to a Solution

Option 1: Standard Machine Learning
(ML)

v Fast predictions
X "Black box" - physically implausible results

X No guarantee ofmass balance

Option 2: Knowledge -Guided ML
(KGML)

v Speed of ML+ Scientific inte grity
v Enforces physical rules during training

v "Glass box" - fast, accurate, trustworthy



The KGML-SWAT Emulator

Physics-Informed
Loss Functions

Penalize violations of core
physical principles.
Enforces process
relationships.
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Unified Multi -
Scenario Architecture

One modelhandles all

management practices.

Learns tillage & irrigation
effects directly.
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Gradual physics constraint
introduction.
Prevents training instability.



Model

Development
& Traming




The Foundation

1.56M+

Field -Year Records

~21,000

Agricultural fields in the
South Platte River Basin

Scenario management
Years of data (2003-2020) combinations
(Tillage/irrigation)

Validation Strategy
Spatial Cross-Validation, holding out entire fields to ensure the model
generalizes to new locations



Model Architecture

A Model That Thinks Like a Hydrologist

Feature Feature Prediction

Encoders Fusion EE S



Model Architecture

A Model That Thinks Like a Hydrologist

Feature | Feature Prediction
Encoders J Fusion heads

= Soil Properties (14 features)

E_:;:) Climate Variables (21 features)
m Management Characteristics (8 features)
B’ Topographic Features (3 features)
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% Crop information (2 features)



Model Architecture

A Model That Thinks Like a Hydrologist

Feature Feature Prediction
Encoders Fusion heads

- Soil Properties (14 features)

;') Climate Variables (21 features) P d &
5 rocesse

Transformed
data

H:!! Management Characteristics (8 features)

@ Topographic Features (3 features)

N
% Crop information (2 features)
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Model Architecture

A Model That Thinks Like a Hydrologist

Feature Feature Prediction
Encoders Fusion heads
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Model Architecture

A Model That Thinks Like a Hydrologist

Feature Feature Prediction
Encoders Fusion heads

Precipitation Irrigation
Runof foqin = (P —1,)* IrrigationNeed = CropWaterReq — PrecipGrowingSeason
RunOﬁ: P +08xS Runof f;, = IrrigationNeed * IrrigationRatio

P is precipitation. Initial
abstraction (la) & Retention
parameter (S) are calculated
based in the CN

Irrigation ratio is based on
irrigation type (Flood/Sprinkler)
and efficiency (Management data)
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Model Architecture

A Model That Thinks Like a Hydrologist

Feature
Encoders

N
N
N Z

g \ Feature Prediction

Fusion heads

Sediment Yield =R =K *LS =C =P

‘__ Erosion

Ris the runoff erosivity factor (calculated from runoff volume and peak flow)
Kis the soil erodibility factor (learned from soil texture, organic matter, and
structure)

LS is the topographic factor (learned from slope steepness, as slope length is
constant at 50m)

C i1s the cover and management factor (learned from crop type, tillage
system, and residue management)

P is the support practice factor (constant at 1.0 in this dataset) 14



Model Architecture

A Model That Thinks Like a Hydrologist

Feature Feature Prediction
Encoders Fusion heads
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Availabley = Fertilizery + Residuey + Mineralizationy

* Mineralization rates are temperature and moisture
Nutrient dependent, with higher rates under warm, moist conditions.
« The modellearns that tillage enhances mineralization
through increased soil aecration and residue incorporation.
« Maximum mineralization is constrained to 3% ofsoil organic
nitrogen per year based on established literature values.
15



Model Architecture

A Model That Thinks Like a Hydrologist

Feature Feature Prediction
Encoders Fusion heads

Feature Fusion

PhySiCS' Ltotal = Lprediction + Amass * Lmass + Aprocess * Lprocess + Abounds * Lbounds
Informed S TTT—
Loss Prediction Loss

Functions Mean Square Error in predictions




Model Architecture

A Model That Thinks Like a Hydrologist

Feature Feature Prediction
Encoders Fusion heads

Feature Fusion

PhySiCS' Ltotal = Lprediction + Amass * Lmass + Aprocess * Lprocess + Abounds * Lbounds
Informed - —\
Loss Mass balance Constraints

Functions Maxry = Fertilizery + Residuey + 0.03 * Soilg,gy




Model Architecture

A Model That Thinks Like a Hydrologist

Feature Feature Prediction
ii::!! Encoders Fusion heads

N
N
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Feature Fusion

PhySiCS' Ltotal = Lprediction + Amass * Lmass + Aprocess * Lprocess + Abounds * Lbounds
Informed T

Loss Process Relationship Constraints

Functions Concentration (TN/Runo ff) within realistic range

Correlation (TN, Erosion)> 0.9
Lower Erosion in reduced tillage, lower runoff in sprinkler irrigation




Model Architecture

A Model That Thinks Like a Hydrologist

Feature Feature Prediction
Encoders Fusion heads

Feature Fusion

PhySiCS' Ltotal = Lprediction + Amass * Lmass + Aprocess * Lprocess + Abounds * Lbounds
Informed - —
Loss Physical Bounds Constraints

Functions Totalload per hectare is within realistic range




Model Architecture

A Model That Thinks Like a Hydrologist

Feature Prediction
Encoders heads

Feature Fusion

Phase 1 Phase 2 | Phase 3
a Three-Phase Pure Machine Gradual Physics Full Physics
n Learning (Epochs 1- Integration (Epochs Constraints (Epochs
Training 20) 21-50) 51-150)
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Model Architecture

A Model That Thinks Like a Hydrologist

Feature Prediction
Encoders heads

Prediction heads
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Total Nitrogen Prediction
Total Phosphorus Prediction



Model Architecture

A Model That Thinks Like a Hydrologist

Prediction

Encoders heads

TN Output

Output
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Model Architecture

A Model That Thinks Like a Hydrologist

Feature Physics Feature Prediction
Encoders Module Fusion heads
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Model

Performance




NSE

Performance at a Glance

Modelvalidation shows high accuracy, with Modelerror (RMSE) rapidly minimizes
Nash-Sutcliffe Efficiency values stabilizing and stabilizes by epoch 50, reaching
near 0.88 for TN and 0.85 for TP ~4.5 for TN and ~0.1 for TP.
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Validation Loss

Constraint Weights

Performance at a Glance

The three-phase training, pure MLIoss increase
byepoch 20, ramping Mass Weightto 1.5 and
Process Weightto 0.5 between epochs 20-50.

Validation Loss & Constraint Weights
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Mass Loss

Process Loss

As physics constraints are applied at epoch 20,
the model was initially violating physics, but it
rapidly corrects after activating the constraints

Validation Mass Loss & Process Loss
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Performance at a Glance

Validation Loss

Both models achieve a high avg. NSE 0f~0.9, The "Zero Physics" model consistently violates physics
with the zero physics model has slightly lower (Mass Loss ~0.4, Process Loss > 15), while the "With
validation loss Physics" modellearns to force both physics losses to 0.
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SWAT

1000 fields
x4 scenarios

KGML
1000 fields
x4 scenarios

Breaking the Bottleneck: A Time & Reliability Comparison
From Days to Minutes: The End User Prospective

Setup

-

o

~

Collect data
(web/user),

create input files

1-2 Hours

Execution

-

~

Run SWAT field -

J

-

o

Prepare a single
input data table

~

5 Minutes

-

by-field for 20

years

20 Hours

Post-Process

-

J

-

)

o

Make 80,000
predictions
(1000x4x20)

10 Seconds

~

-

Aggregate
results from all
4000 outputs

0.5 Hours

~

Final Outcome
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o

Outputis
already
aggregated

0 Seconds

~

o

Prone to errors from
complex input files,
requiring manual
debugging.

Total Time: ~1 Day

~

J

-

Robust & stable;
eliminates input file
eITors

Total Time: ~5 Minutes
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Conclusions

« KGML emulator solves the SWAT bottleneck,
enabling rapid predictions for large -scale,
web -based decision support.

« By incorporating physical laws, the model
produces scientifically reliable and
trustworthy results.

» This "glass box" method makes Al a robust
and defensible tool for agricultural and
environmental modeling.




I Thank you

Mohamed Fawzy Mahmoud
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M.Fawzy.Mahmoud @colostate.edu
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