Assessment of Stream Flow and Nutrient Load in a Highly Tiled Watershed using SWAT+: A Case Study of the Le Sueur Basin

Sagarika Rath¹ Natalja Čerkasova¹ Celray James Chawanda^{1,3} Michael White² Jeffrey Arnold²

1: Texas A&M Agri Life Research, Temple, Texas, USA 2: USDA-ARS Grassland Soil and Water Research Laboratory 3: Vrije Universiteit Brussel

Conservation Effects Assessment Project (CEAP)

International SWAT Conference 2023, Denmark

Introduction

- Explore the interaction between surface and subsurface hydrologic processes accounting for the tile drainage.
- Analyze spatial and temporal dynamics of nutrient fate and transport processes.
- Assess various crop management strategies in reducing nutrient load to achieve conservation goal.

National Agroecosystems Model (NAM)

The NAM is a field-based, national scale hydrologic model to aid in <u>conservation</u> <u>planning</u> and policy.

Jeffery Arnold and Mike White (USDA-ARS)

Arnold et al., 2021. Conceptual Framework of Connectivity for a National Agroecosystem Model Based on Transport Processes and Management Practices. Journal of the American Water Resources Association57 (1): 154–169. Doi.org/10.1111/1752-1688.12890.

Gauges	Data	Duration
•	Flow	2000-2018 daily
	Nitrate	2008-2018 Weekly

The management practices follow the NRCS crop management Template and US Agricultural Census data.

Management Practices

Model Evaluation

• Default hydrological parameters

Soft-Calibration: Hydrologic Mass Balance Calibration

Source: Reitz et al., 2017. Annual Estimates of Recharge, Quick-Flow Runoff, and Evapotranspiration for the Contiguous U.S. Using.... Journal of the American Water Resources Association. 53(4): 961-983. https://doi.org/10.1111/1752-1688.12546.

Soft-Calibration:

- Satisfactory prediction
- Over predicted flow

Overestimation of nutrient load

Soft Calibration + Tile Parameters

Tile depth Tile drainage coefficient Tile lag

Water Balance

• Simulated monthly watershed scale ET closely follows the trend of MODIS (satellite product) ET.

MODIS (Moderate Resolution Imaging Spectroradiometer)

Water Balance

—Loadest —calibrated

LOAD ESTimator (LOADEST) By USGS

Nitrate Load Calibration

Monthly Load Variation

• The nitrate Load reflects the seasonality in precipitation that starts increasing from March and peaks during the month of June.

ASSESSMENT TOOL

- Nitrate load also synchronize with the timing of fertilizer application during summer.
- Fall N fertilizer application slowly releases in subsequent months due to snow cover.

Spatial Variation NO₃-N Loss

SOIL & WATER ASSESSMENT TOOL

Annual Average NO₃-N Loss (2003-2018) at Field scale

Tested Scenario

Fertilizer

2

Hot Spots: Fields > 30 kg/ha NO_3 -N Loss

Simulated Corn and Soyabean yield (2000-2018) across basin. Different letters indicate significant differences ($p \le 0.05$) between scenarios according to Tukey's test.

Take Home Message

✓ The implementation of nutrient reduction and cover cropping alone may not be adequate to achieve the conservation goal, and it may come at the expense of compromising economic returns.

Explore additional conservative measures

- Increase Fertilizer use efficiencies (Apply right time and right rate)
- Promote conservation and Reduce tillage practices
- Marketable Cover crops (short seasonal crops)
- Controlled tile drainage practices (manage timing and amount of water discharge)
- Grassed waterways and buffers
- Land use change (convert crop/soyabean fields to hay/ Perennial energy crops)

Thank You

sagarika.rath@ag.tamu.edu

Texas A&M AgriLife Research Temple, Texas