History of Model Development at Temple, Texas

J. R. Williams and J. G. Arnold

AgriLIFE RESEARCH

INTRODUCTION

Model development at Temple > A long history (1937-present) > Many scientists participating in: Data collection Component construction Structural design Validation Application

Now


INTRODUCTION

- Model construction—a small group at Temple
 - USDA-Agricultural Research Service (ARS)
 - Texas AgriLIFE Research
 - USDA-Natural Resources Conservation Service (NRCS)
- Components, equations, etc.
 - Contributed by many scientists worldwide
 - Worldwide Scientific link provided
 - Additional expertise needed to develop comprehensive models

INTRODUCTION TEMPLE MODELS

- ALMANAC, EPIC, APEX, SWAT
 - Operate on spatial scales ranging from individual fields to river basins
 - Daily time step
 - Continuously updated and improved as a result of user interaction and feedback

DATA COLLECTION-RIESEL

- Blackland Experimental Watershed-hydrological data collection program
 - Established in 1937 near Riesel, TX.
 - 57 rain gages and 40 watersheds
 - Established to analyze the impact of land use practices on:
 - soil erosion
 - flood events
 - water resources
 - agricultural economy

1938 – Calibrating gauging station W-2

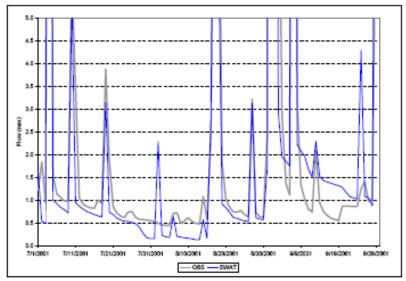
MODEL DEVELOPMENT

- Started with hydrograph development and flood routing research in 1965
 - Background
 - 2.5 years experience in SCS flood control
 - New TR-20 flood routing model
 - Data from Riesel used in developing & testing hydrological models
 - Early models were single event models used as building blocks for today's models
 - Focused on surface water hydrology and sediment yield

SURFACE RUNOFF

- SCS curve number method
- Green & Ampt infiltration equation

Used in EPIC, APEX and SWAT


UNIT HYDROGRAPH MODEL

- Two parameter gamma distribution
 - Rising limb
 - Peak
 - Recession to inflection point
- Exponential recession limb
 - Inflection point to base flow or zero
- For simulating runoff hydrographs from small Texas Blackland watersheds

UNIT HYDROGRAPH MODEL

- Tests showed recession limb depleted too rapidly in many cases
- Hydrograph modified
 - Two parameter
 - gamma distribution
 - Double exponential recession limb

• (1973)

Figure 3-10 Daily base flow hydrograph for winter 2001 (reduced ET scenario - catchment D2).

FLOOD ROUTING

- Variable travel time method (VTT)
- VTT converted to Variable storage coefficient (VSC)
 - Improve accuracy of storage flood routing
 - Convenience in computer solutions
 - Accounts for variation in travel time
 - Maintains correct water balance
 - Later included effects of water surface slope (Williams, 1975)
 - Included in APEX and SWAT
- (1969)

HYMO

- Problem oriented computer language – Consisted of
 - Runoff curve number
 - Unit hydrograph
 - VSC flood routing method
 - MUSLE (sediment yield)
- (1972)

MUSLE

- Single storm event sediment yield
- Introduced runoff energy factor
- Eliminated need for delivery ratio
 - Runoff factor represents energy used in detaching and transporting sediment
- (1975)

SEDIMENT ROUTING

- Based on
 - MUSLE
 - Exponential function of travel time and particle size
 - One routing coefficient determined for all subareas in a watershed
 - Provided estimates of sediment deposition from subarea outlet to watershed outlet
 - Did not locate deposition
 - Ignored degradation
- (1975)

SEDIMENT ROUTING

- Worked in conjunction with flood routing model
 - Transported sediment from reach to reach adding subarea contributions as flow was routed downstream
- Deposition similar to previous model
- Degradation component developed
 - Bagnold's stream power equation
- Applies to individual routing reaches
- (1978)

SEDIMENT ROUTING

- Current model uesd in APEX and SWAT
- Modified Bagnold
 - Sediment concentration function of
 - Flow velocity
 - Sediment load
 - Particle size
 - Vegetative cover
 - Soil erodibility
- (2000)

WIND EROSION

• EPIC wind erosion model

- Modified Manhattan, KS model (WEQ)
 - Converted annual to daily time step
 - Simulated
 - » Vegetative cover
 - » Tillage effects

• (1984)

WIND EROSION

- Current EPIC/APEX model
 - Wind Erosion Continuous Simulation (WECS)
 - Revised original model
 - Driven by daily wind speed
 - Bagnold's equation
 - Function of daily wind run
 - Wind direction
 - Field orientation
- (1995)

CROP GROWTH

• CERES model

- Simulated crop growth and yield in uniform field
- Maize and wheat
- Simulates effect on development, growth & yield as a function of:
 - Cultivar
 - Plant population
 - Weather
 - Soil
- (1986)

CROP GROWTH

• EPIC crop model

- Used some concepts from CERES
- Generic model simulates 100+ crops
 - Annuals/perennials
 - Field crops/pastures
 - Legumes
 - Trees/shrubs
 - Unique parameters for each crop
- (1989)

CROP GROWTH

- ALMANAC crop model
 - Based on EPIC crop model
 - Plant competition (up to 10 crops)
 - Assess impact of weeds on crop yields
 - Grown in same space
 - Compete for
 - Water
 - Nutrients
 - Light

WEATHER SIMULATION

• WGEN

- Simulated daily
 - Precipitation
 - Temperature (max and min)
 - Radiation
 - Wind speed and direction

• (1981)

WEATHER SIMULATION

• WXGN

- Combination of WGEN and CLIGEN
- Used in all Temple Models
- Simulates daily
 - Precipitation
 - Temperature (max and min)
 - Radiation
 - Relative humidity
 - Wind speed and direction
- (1984)

WATER YIELD MODEL

- Developed to estimate water yield from agricultural watershed
- Based on SCS curve number
- Continuous daily time step
- Soil moisture accounting
 - Driven by pan evaporation
 - One parameter optimized to match average annual water yield
- (1976)

CREAMS

- Designed to evaluate non-point source pollution from field-size areas
- Components
 - Hydrology
 - Erosion
 - Nutrients
 - pesticides
- Daily time step hydrology
 - Surface runoff estimation
 - Based on SCS water yield model
 - Infiltration approach
 - Added ET and percolation
- Later revised to become GLEAMS
 - Emphasized pesticide fate
- (1980)

SWRRB

- Based on CREAMS daily hydrology
- Watershed scale
 - Subdivided
 - Spatial weather generator (CLIGEN)
 - Water and sediment yield (MUSLE)
 - Water & sediment balances for ponds and reservoirs
- Provided the basis for SWAT
- (1985)

SWRRB APPLICATIONS IN U.S. – 1980'S

 National Oceanic and Atmospheric Administration (NOAA) National Coastal Pollutant Discharge Inventory

10.00

• U.S. Environmental Protection Agency Pesticide Registration Model

EPIC

ENVIRONMENTAL POLICY INTEGRATED CLIMATE MODEL

- Designed to define the erosion-productivity relationship throughout the U.S.
- Field scale
- Components
 - Weather simulation
 - Weather generator
 - Hydrology
 - Runoff (CN or Green and Ampt)
 - Erosion-sedimentation
 - Wind and water
 - Nutrient cycling
- (1984)

EPIC

- Components continued
 - Plant growth
 - Tillage
 - Soil temperature
 - Economics
 - Management
- (1984)

EPIC

• Applications

- Used to evaluate soil erosion impacts for 135
 U.S. land resource regions
- AUSCANE model (spin-off of EPIC) created to simulate Australian sugarcane production
- Assessed the impacts of future climate change on U.S. corn, soybean, alfalfa, and wheat yields
- Assessed impacts of typical Mayan culture agricultural cropping systems and practices on erosion and development of Mayan civilization
- Assessed irrigation timing and amount strategies for sunflower in Southern Italy to determine critical growth stage for irrigation application

APEX AGRICULTURAL POLICY / ENVIRONMENTAL EXTENDER MODEL

- Whole farm/watershed scale
- Subarea component (EPIC)
- Routing (water, sediment, nutrients, pesticides)
- Groundwater & reservoir
- Feedlot dust distribution
- Daily time step
- Capable of simulating 100's of years
- (2000)

APEX

• Management capabilities

- Irrigation
- Drainage
- Furrow diking
- Buffer strips
- Terracing
- Waterways
- Fertilization
- Manure management
- Lagoons

- Reservoirs
- Crop rotation and selection
- Pesticide application
- Grazing
- Tillage

APEX

Applications

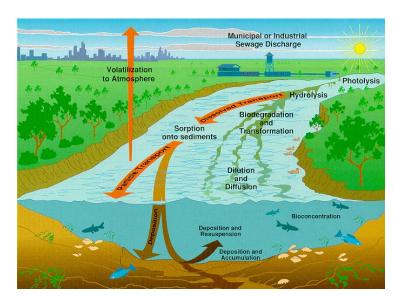
- Evaluate effects of global climate/CO₂ changes
- Design environmentally safe, economic landfill sites
- Design biomass production systems for energy
- Livestock farm and nutrient management (manure and fertilizer)
- Forest management
- Evaluate effects of buffer strips nationally
- Simulate runoff, erosion/sediment yield, nutrient and pesticide losses from cropland in the U.S. (CEAP)

SWAT

SOIL AND WATER ACCESSMENT TOOL

- Basin scale
- Based on SWRRB
- Readily available input—physically based
- Comprehensive-Process interactions
- Simulates streamflow (not just water yield),
 - subsurface flow (tile drainage)
 - groundwater flow
 - lateral flow

Upland Processes


Channel/Flood Plain Processes

SWAT

• Upland Processes:

- Weather
- Sedimentation
- Plant Growth
- Nutrient Cycling
- Hydrology (impoundment, irrigation, subsurface)
- Continuous Time
 - Daily Time Step (sub-hourly)
 - 1 Day to 100s of Years
- Links with APEX, EPIC, ALMANAC
- AVSWAT-X interface (SSURGO soils, splitting tools, auto-calibration and uncertainty tools)

- Pesticide Dynamics
- Soil Temperature
- Management (Agricultural & Urban)
- Bacteria

SWAT

• Applications

- Simulated hydrologic and/or pollutant loss impacts of agricultural & municipal water use, tillage and cropping systems trends (HUMUS)
- Assess benefits of different conservation practices at scale national scale (CEAP)
- Perform U.S Environment Protection Agency Total Maximum Daily Load (TMDL) analyses for impaired waters
- Quantify the impacts of climate change
- U.S. Environmental Protection Agency HAWQS
 National Environmental Assessment

PARTICIPATION IN OTHER MODEL DEVELOPMENT

- GLEAMS
- SPUR
- WEPP
- WEPS
- NLEAP