

Evaluation of Streamflow and Water Quality in an Agricultural Watershed of South Korea using SWAT and KOMPSAT-2 Detailed Land Use Information

¹Ji-Wan LEE,

³Mi-Seon LEE, ³Min-Ji PARK, ²Geun-Ae PARK and ⁴Seong-Joon KIM*

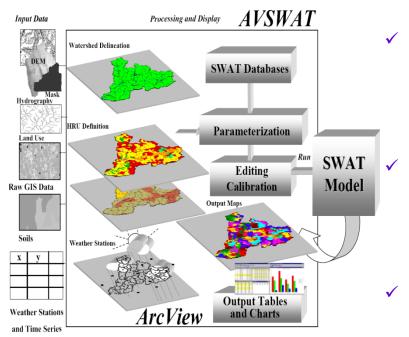
¹ Graduate student, Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea.
 ² Ph.D., Dept. of Rural Eng., Konkuk University, Seoul, South Korea.
 ³Doctoral Candidate student, Dept. of Rural Eng., Konkuk University, Seoul, South Korea.
 ⁴ Professor, Dept. of Civil and Environmental System Eng., Konkuk University, Seoul, South Korea.

Aug 5, 2010

Contents

- Introduction
- The SWAT model and KOMPSAT-2
- Materials and Method
 - The study area description
 - ✓ Land use from KOMPSAT-2 satellite imagery
- Results and Discussion
 - SWAT model calibration and validation
 - The impact of land use
- Concluding remarks

Introduction

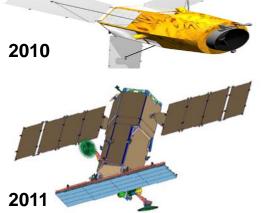

Land use is the essential information in NPS assessment.

- The effects of land use are directly linked to changes in streamflow and NPS pollution loads such as sediment, T-N (Total Nitrogen) and T-P (Total Phosphorus).
- Recently, a practical use of high spatial resolution image such as IKONOS, QuickBird, and KOMPSAT (KOrea MultiPurpose SATellite)-2 is accommodated in various land use related application field.
- Environmental problem by Non Point Source (NPS) pollution in our country is a big issue for the healthy watershed management.
 - The accurate NPS evaluation can improve efficient watershed management which will eventually improve the stream water quality.
- The precise and accurate information of land use data enhances the evaluation of NPS pollution loads from a watershed.

SWAT model Description

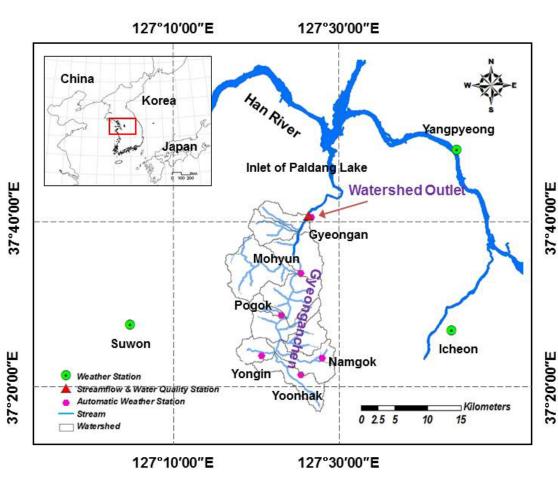
SWAT (Soil and Water Assessment Tool)

- SWAT model operations on daily time step and based on the concept of hydrologic response units (HRUs)
 - HRUs are portion of a sub watershed that possess unique land use / management / soil attributes
 - SWAT is able to simulate surface and subsurface flow, sediment generation and deposit, and nutrient late and movement through the landscape and river



KOMPSAT-2

KOMPSAT-2 (KOrea Multi-Purpose SATellite-2)



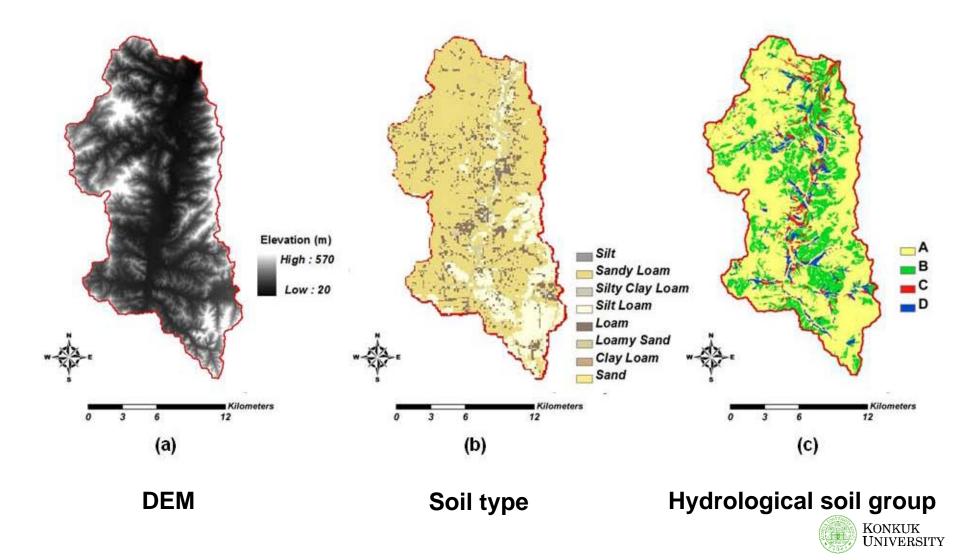
- KOMPSAT (KOrea Multi Purpose SATellite)-2 is a lightweight earth observation satellite developed by the KARI (Korea Aerospace Research Institute).
- KOMPSAT-3 that will have spatial resolution of 1 m panchromatic and 2.8 m multi-spectral images is scheduled to launch in 2010. (KOMPSAT-1: 1999, 6.6 m, KOMPSAT-2: 2006, 1.0 m)

- KOMPSAT-5 with an active sensor of Synthetic
 Aperture Radar (SAR), had a launch in 2011.
- KOMPSAT-2 image can produce USGS (United States Geological Survey) Level IV (0.25 - 1.0 m spatial resolution) land use data.

The study Area

 The study area is 251.7 km² agricultural watershed located in the northwestern part of south Korea

Gyeongan-Cheon is the main tributary of Han River directly linked to Paldang Lake.



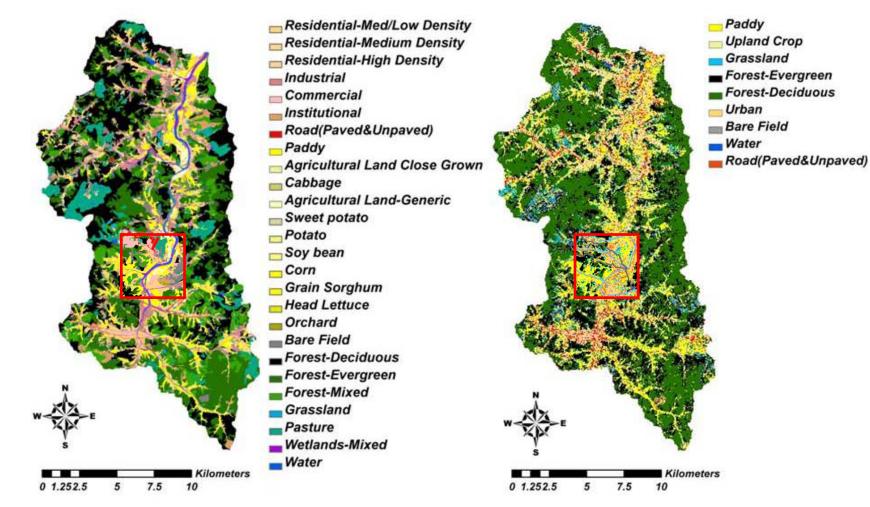
SWAT model Data set

Data Set	Source	Scale	Data Description / Properties			
Terrain	Korea National Geography Institute	1:5,000	Digital Elevation Model (DEM) – 2 m, 30 m			
Soil	Korea Rural Development Administration	1:25,000	Soil classifications and physical properties such as bulk density, texture, and saturated conductivity.			
Land use	KOMPSAT-2 Satellite Image	2 m	Land use classifications such as paddy, grass			
Lanu use	Landsat TM Satellite Image	30 m	and forest.			
Weather	Korea Meteorological Administration	Daily	precipitation, minimum and maximum temperature, mean wind speed and relative humidity data from 1995 to 2007			
Streamflow	Han River Flood Control Office	Daily	streamflow data from 2001 to 2007			
Water Quality	Ministry of Environment	Monthly	water quality (SS, T-N and T-P) data from 2001 to 2007			

SWAT model Data set

Land use from KOMPSAT-2

- KOMPSAT-2 land use of study area
 - 30 GCP 30 GCPs (Ground Control Points) acquired from SOKKIA GPS (Global Positioning System) equipment
 - The KOMPSAT land use was produced by on-screen digitizing method with GPS field investigation data.
 - The land use was classified with more than 26 categories.


KOMPSAT (2007/09/17)

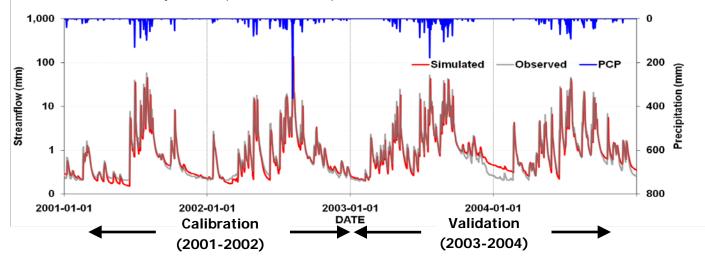
Ortho-rectification using GCPs and Land use investigation

Land Use Data

KOMPSAT (2 m)

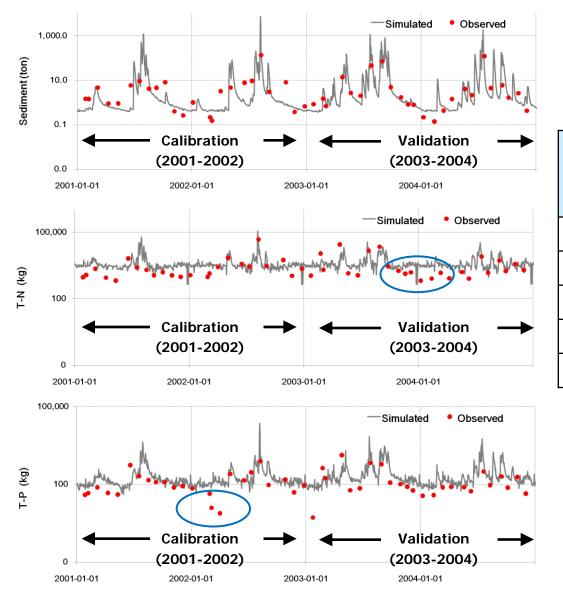
Landsat (30 m)

КОМІ	PSAT (2 m)		Landsat (30 m)			
Class	Area (km²)	[%]	CN	Class	Area (km²)	[%]	CN
Residential-Med/Low Density	16.62	[6.54]	76.1	- Urban	21.12	[8.39]	77
Residential-Medium Density	0.05	[0.02]	71.0		21.12		
Residential-High Density	0.40	[0.16]	75.3				
Industrial	12.01	[4.73]	85.2				
Commercial	5.03	[1.98]	90.5				
Institutional	4.50	[1.77]	43.1				
Road	4.49	[1.77]	89.4	Road	11.00	[4.37]	89.4
Sub Total	43.10	[16.96]	75.8	Sub Total	32.12	[12.76]	83.6
Paddy	18.99	[7.47]	78.0		46.56	[18.50]	78.0
Agricultural Land-Close-grown	0.04	[0.02]	67.5		8.41	[3.34]	72.3
Cabbage	0.42	[0.17]	71.0]	0.41	[3.34]	72.5
Agricultural Land-Generic	4.12	[1.62]	75.5				
Sweet potato	0.23	[0.09]	71.5]			
Potato	0.23	[0.09]	71.8				
Soybean	0.16	[0.06]	70.3				
Corn	0.56	[0.22]	69.7				
Grain Sorghum	0.08	[0.03]	67.9				
Head Lettuce	0.02	[0.01]	71.3				
Orchard	0.39	[0.15]	58.6				
Sub Total	25.23	[9.93]	70.3		54.97	[21.84]	75.2
Forest-Deciduous	63.61	[25.04]	50.5	Forest-Deciduous	94.33	[37.48]	50.5
Forest-Evergreen	58.81	[23.15]	53.0	Forest-Evergreen	48.10	[19.11]	53.0
Forest-Mixed	21.04	[8.28]	53.3				
Grassland	1.56	[0.62]	40.7	Grassland	18.70	[7.43]	40.7
Pasture	19.16	[7.54]	57.0				
Wetlands-Mixed	2.56	[1.01]	98.0				
Sub Total	166.75	[65.63]	58.8	Sub Total	161.13	[64.02]	48.5
Bare Field	16.33	[6.43]	98.0	Bare Field	3.12	[1.24]	98.0
Water	0.27	[0.11]	100.0	Water	0.38	[0.15]	100.0
Total	251.7	[100]	63.0	Total	251.7	[100]	60


Calibrated parameters

Component	Parameter	Min.	Max.	Calibrated value
Streamflow	CN2	0	100	▼ 6
	ESCO	0	1	0.8
	ALPHA_BF	0	1	1
	SOL_AWC	0	1	▲ 0.2
	CH_K2	-0.01	500	100
Sediment	USLE_P	0	1	0.7
	Spcon	0	0.01	0.0003
	CH_Erod	-0.05	0.6	▲ 0.5
T-N	ERORGN	0	5	2.5
T-P	PHOSKD	100	200	▲ 25
	SOL_OrgP	0	100	50
	GWSOLP	0	1000	1

Model Calibration : Streamflow


- Hydrology (streamflow) and Water quality (sediment, T-N, and T-P)
 - The SWAT model was calibrated for 2 years (2001-2002) using daily streamflow and monthly water quality records from 2001 to 2002, and validated for another 2 years (2003-2004).

The error of runoff may come from the withdrawal through the paddy field drainage during irrigation period from the middle of May to the early period of September and the uncertainty of groundwater contribution to streamflow

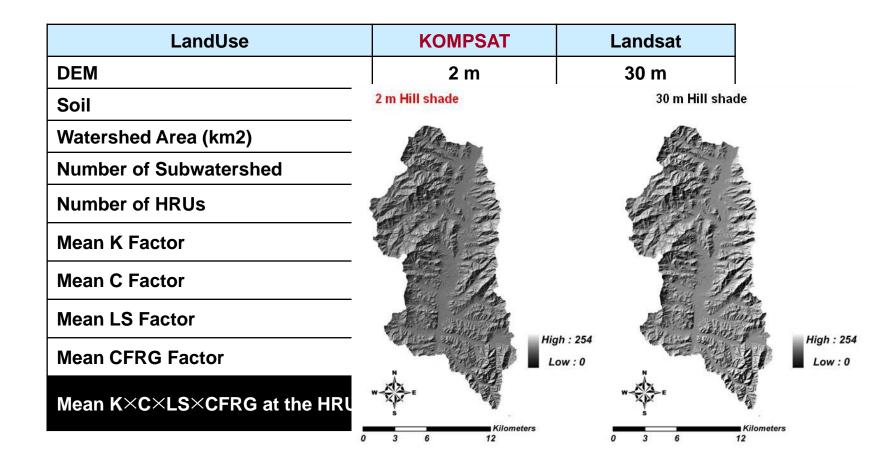
Year	R ²	<i>RMSE</i> (mm/day)	ME
2001	0.62	3.16	0.51
2002	0.95	3.13	0.89
2003	0.81	2.42	0.74
2004	0.79	2.30	0.63
Mean	0.79	2.75	0.69
		Contraction of the second	UNIVERSIT"

Model Calibration : Water quality

DATE

	R ²							
Year	Sediment	T-N	T-P					
2001	0.66	0.63	0.61					
2002	0.94	0.92	0.68					
2003	0.85	0.60	0.87					
2004	0.95	0.69	0.56					
Mean	0.85	0.71	0.68					

KOMPS	Landsat (30 m)						
Class	Area (km²)	[%]	CN	Class	Area (km²)	[%]	CN
Residential-Med/Low Density	16.62	[6.54]	76.1	Urban	21.12	[8.39]	77
Residential-Medium Density	0.05	[0.02]	71.0				
Residential-High Density	0.40	[0.16]	75.3				
Industrial	12.01	[4.73]	85.2	7			
Commercial	5.03	[1.98]	90.5	7			
Institutional	4.50	[1.77]	43.1				
Road	4.49	[1.77]	89.4	Road	11.00	[4.37]	89.4
Sub Total	43.10	[16.96]	75.8	Sub Total	32.12	[12.76]	83.6


	РСР	Aver	age. Runoff	(mm)	F	Runoff Ratio (%)	
YEAR	(mm)	Obs.	KOMPSAT	Landsat	Obs.	KOMPSAT	Landsat	Watershed average
2001	1036.0	469.2	548.2	619.7	45.3	52.9	59.8	CN KOMPSAT: 63
2002	1463.5	933.7	818.7	892.0	63.8	55.9	60.9	Landsat : 60
2003	1597.0	984.6	927.2	961.5	61.7	58.1	60.2	
2004	1136.0	573.2	729.9	810.7	50.5	64.2	71.4	
Mean	1272.9	740.1	756.0	820.9 [-8.58]	55.3	57.7	63.1 [-9.17]	and the second
[]:Percent	of decrease ba	sed on KOMF	' PSAT	1	1	1	1	KONKUK UNIVERSIT

[]:Percent of decrease based on KOMPSAT

Results

Sediment generation

 The different spatial resolution of land use and DEM affected the mean values of USLE K, C, LS and CFRG

Results

The NPS loadings from the model prediction

- ✓ As the sediment yields increased, the T-N, T-P loads increased.
- The sediment, T-N, and T-P of KOMPSAT land use showed 2.3 %, 2.1 %, and 12.2 % higher than those of Landsat land use

Year	Average. Sediment (ton/day)			Average. T-N (kg/day)			Average. T-P (kg/day)		
	Obs.	KOMPSAT	Landsat	Obs.	KOMPSAT	Landsat	Obs.	KOMPSAT	Landsat
2001	3.5	3.6	2.4	1805.7	2762.1	2697.2	129.1	135.8	121.2
2002	14.5	11.3	13.0	6505.4	6737.3	6303.0	166.0	125.7	141.9
2003	12.2	28.7	27.7	7367.9	5720.9	5541.0	307.4	394.3	299.5
2004	12.0	8.2	7.5	2341.9	2471.1	2764.2	106.0	126.2	123.8
Mean	10.5	12.9	12.6 [2.32]	4505.2	4422.8	4329.6 [2.10]	177.1	195.5	171.6 [12.22]

[]:Percent of decrease based on KOMPSAT

Summary & Conclusions

- In this study, we tried to evaluate the SWAT streamflow, sediment, T-N, and T-P in case of using a quite detailed land use data of a 257.1km² agricultural watershed of South Korea[.]
- Even though the two results could not be compared directly, we found that the 2m KOMPSAT land use detected the impervious areas unrevealed in 30m Landsat land use and the increased impervious area increase the watershed CN and runoff.
- The high resolution satellite images such as KOMPSAT-2 and KOMPSAT-3 are expected to be understanding of detail landuse data effects on water quality.

" Thank You "

For further information, please contact:

Lee, ji wan

Master Course, Dept. of Rural Engineering, Konkuk University closer01@konkuk.ac.kr

Dr. Kim, Seong Joon

Professor, Dept. of Civil & Environmental System Engineering, Konkuk University kimsj@konkuk.ac.kr

We're on the Web!

See us at:

http://konkuk.ac.kr/~kimsj/

Earth Information Engineering Laboratory

