

- 2010 International SWAT Conference -

2010.08.04 Jang, Jae Ho

Outline of Presentation

2

3

4

Research Background and Objectives

Model Preparation and Application

Watershed Management Measures

Conclusion and Future Study

Division of Climate Change, Environmental Strategy Research Group

Research Background and Objectives

Research Background

Nature Problem

Division of Climate Change, Environmental Strategy Research Group

Significantly improved by restoration efforts

Korea Environment Institute

Research Background

Research Background

Nature Problem

Field monitor to assess watershed : time consuming, uncertainty

Alternative measure : Computer modeling

Division of Climate Change, Environmental Strategy Research Group

Korea Environment Institute

Research Objectives

Model selection

Model selection & application

Continuous, long-term simulation Complicated watershed-scale

Point and nonpoint source

Flow and pollutant transportation

Widely used in home and abroad

SWAT model

Model input data and setting

Objections

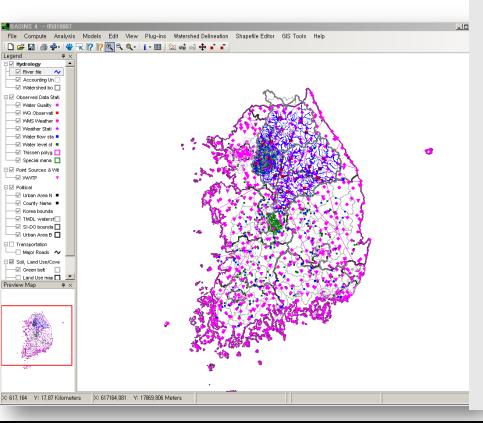
Modification of BASINS view for South Korea

Verification of SWAT applicability

Evaluation of pollution loads

Evaluation of BMPs for prevention of water pollution

Assistance of Watershed Management Plan and Policy



Model Preparation and Application

Model Preparation

BASINS modification

Modification for application of Korea

Original initial datasets

Hydrology

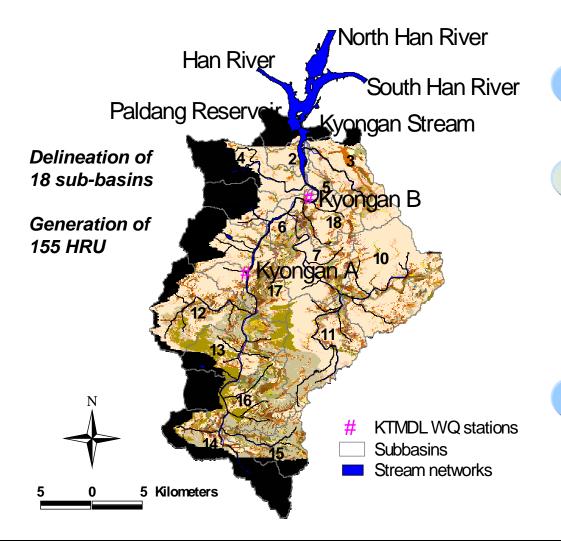
Reach File, V1 Cataloging Unit Code Accounting Unit Boundaries **Cataloging Unit Boundaries Observed Data Stations** Water Quality Water Quality Observation WDM Weather Data **USGS** Gage Bacteria Weather Station Area NAWQA Study Area Unit Boundaries **Point Sources & Withdrawals** Permit Compliance System Political Urban Area Name **EPA Region Boundaries** State Boundaries Urban Area Boundaries

Transportation Major Roads Soil, Land use/Cover Land Use Index Managed Area Database Soil index

Modified initial datasets

Hydrology **River file** Drainage area Multi-Purpose Dam Watershed boundaries **Observed Data Stations** Water quality (KMOE) Weather Station Site Water Level Station Water Flow Station (TMDL) WQ Observation (TMDL) **Thissen Polygons** Special manage Region **Point Sources & Withdrawals** WWTP Political Urban Area Name boundary TMDL watershed SI-DO boundaries Urban area Boundaries Transportation Major Roads Soil, Land Use/Cover Land Use map Managed Area Database Soil Map

Division of Climate Change, Environmental Strategy Research Group


Model Preparation

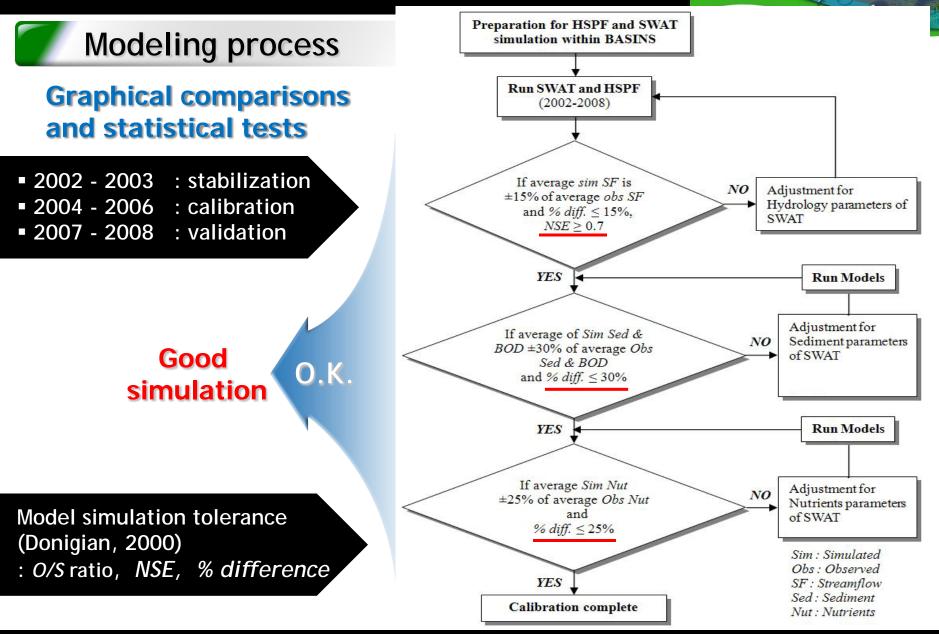
Model input data availability

Input data	Source of data and Information
Hydrology boundary conditions River file Watershed boundaries	National Geographic Information Institute (Hydrologic unit map)
GIS data	
Land Use map	Environmental Geographic Information System (1:25,000 scale in shape-polygon format)
Soil Map	National Institute of Agricultural Science and Technology (1:25,000 digital detailed soil map)
Digital Elevation Model	Ministry of Environment (MOE) (Resolution 30m × 30m)
Observed data	
Flow and Water quality data	MOE (8-day intervals data at two monitoring stations during 2004 - 2008)
Weather data	Korea Meteorological Administration (3 stations)
Point Sources	MOE (Daily discharge flow from WWTPs)

Model Preparation

BASINS application and water quality data

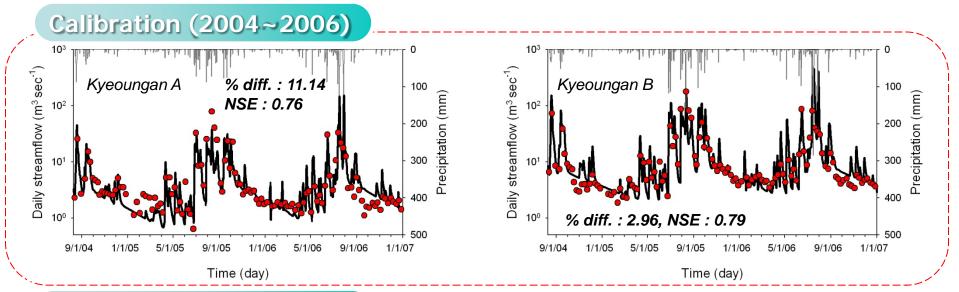
Station No.

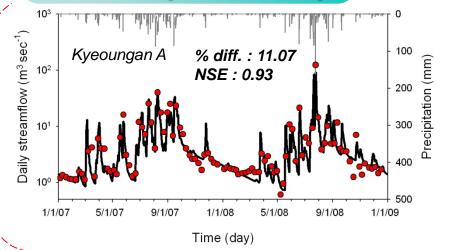

Kyeongan A, Kyeongan B

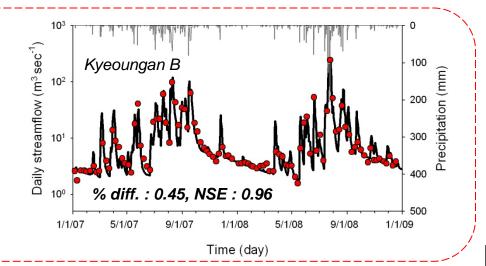
Data collection

Streamflow DO BOD SS TN forms TP forms

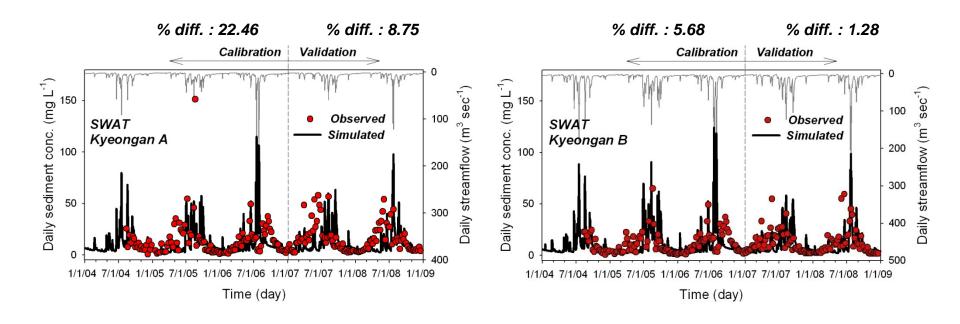
Simulation period

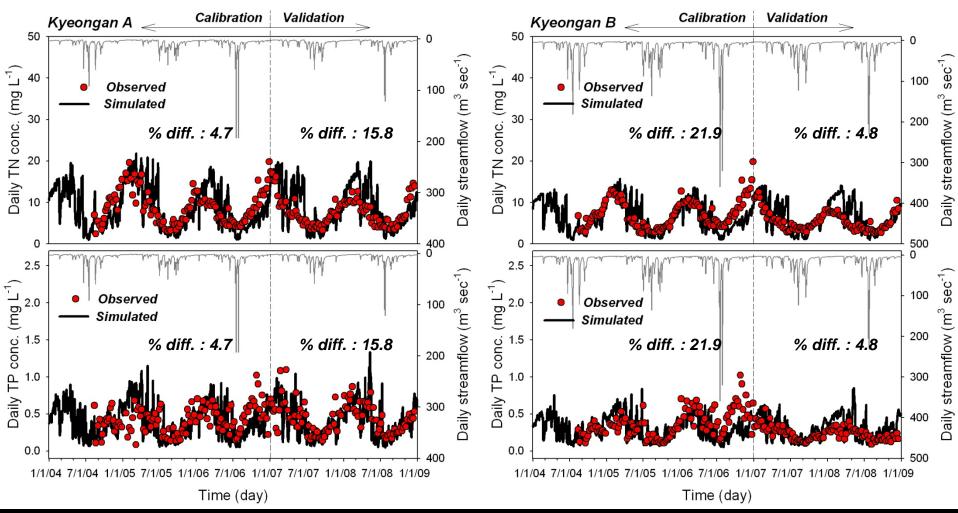

2004.8~2008.12


Division of Climate Change, Environmental Strategy Research Group

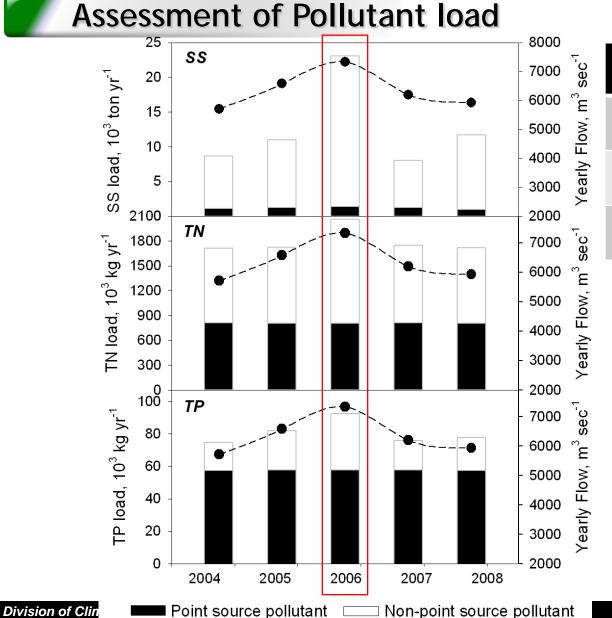

Korea Environment Institute

Hydrology simulation results

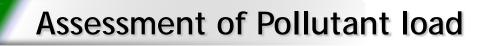

Validation (2007~2008)

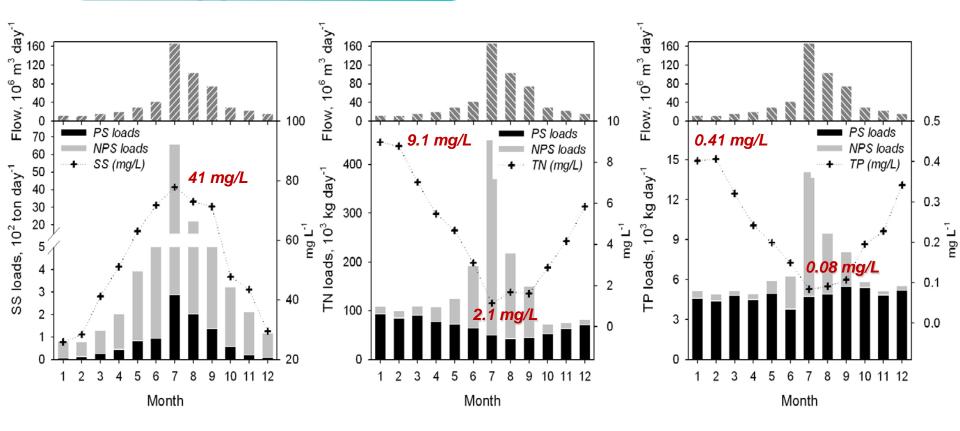


Calibration & Validation (2004~2008)



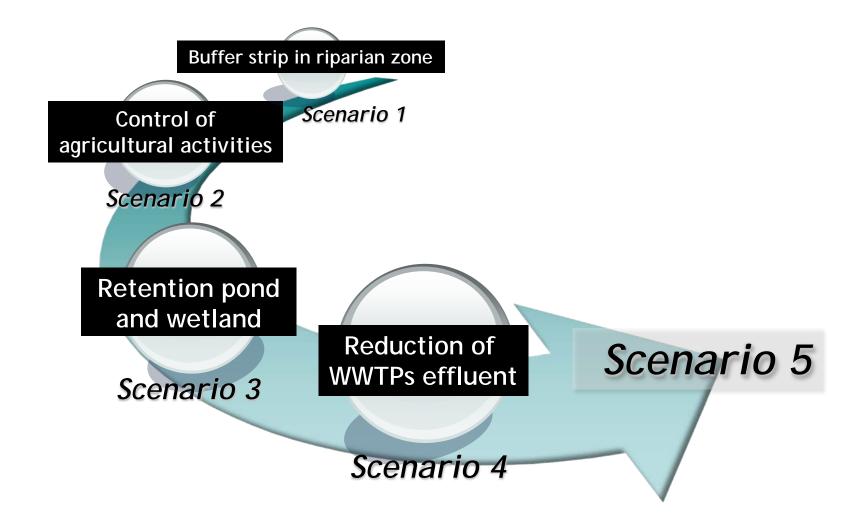
TN and TP simulation results


Calibration & Validation (2004~2008)

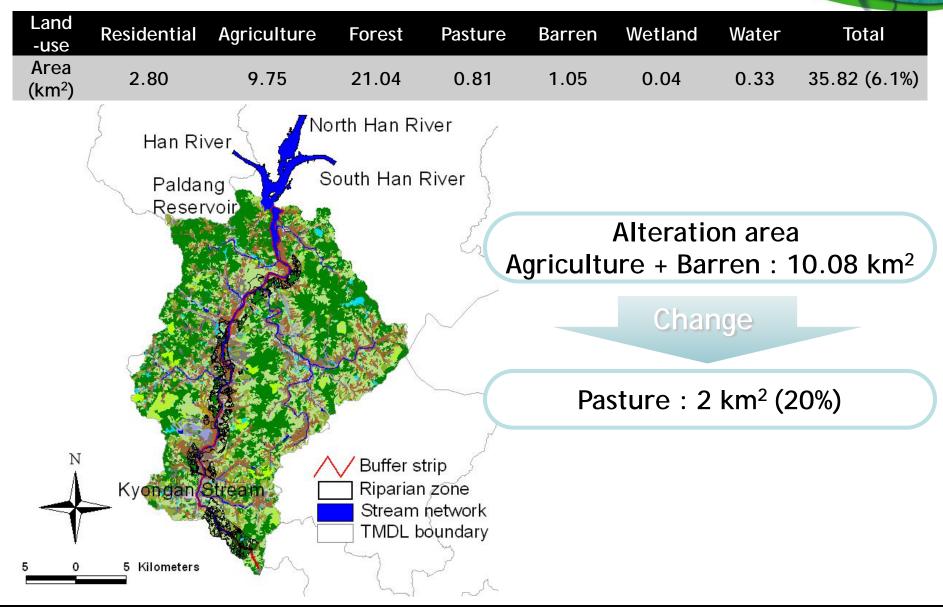

Division of Climate Change, Environmental Strategy Research Group

	NPS pollution ratio						
SS	Average 90.6 %						
ΤN	Average 55.0 %						
TP	Average 28.5 %						

Monthly pollutants load


Watershed Management Measures

Division of Climate Change, Environmental Strategy Research Group


Korea Environment Institute

Watershed Management Measures

Reduction Scenarios

S1-Riparian Buffer Strip

Division of Climate Change, Environmental Strategy Research Group

Reducing Fertilization

Plant growth-related factors

 -Input major crop data: paddy, cabbage, corn, soybean (cultivation, planting, fertilization, irrigation, and harvesting)

"Alternative Water Resource Project"

Treated Wastewater Reuse for Agriculture

Same amount of crop as 40% of Standard fertilization

Reduce the standard amount of fertilizer up to 60%

S2-BMPs for Agricultural Activities

Planting and Structural BMPs

Soil erosion yield in sub-basins

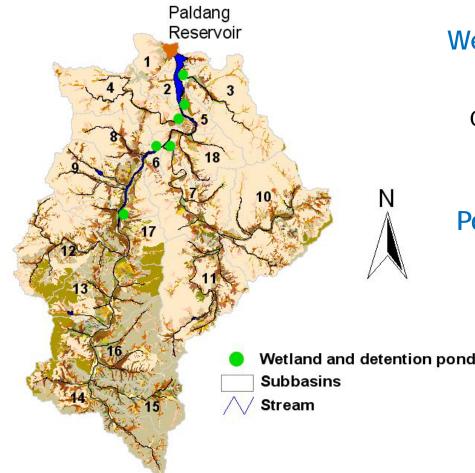
By NAAS report

Sub-basin	2	4	5	7	8	12	13	16	17	18
% Upland	11.4	10.6	19.8	12.8	10.4	13.7	12.7	13.9	15.0	14.4
SYLD ^a	0.50	1.10	3.64	2.29	2.91	2.51	2.85	3.17	3.18	4.61
^a : SYLD (sediment yield, ton/ha·yr)										

BMPs application as Soil erosion yield

SYLD ranges	BMPs application	Sub-basins
2 >	Grassed swale, Planting	2,4
2~4	Grassed swale, Contour farming, Parallel terrace, Filter strip	5, 7, 8, 12, 13, 16, 17
4<	Grassed swale, Contour farming, Parallel terrace, Filter strip, Farm pond, Grade stabilization structure	18

S2-BMPs for Agricultural Activities


Planting and Structural BMPs

Representation BMPs with SWAT

		Representative SWAT parameter			
BMP	Function	Variables (Input file)	Value with no BMP	Value with BMPs in good condition	
	Increase channel cover	CH_COV	1.0	0.25	
Grassed swale/ Planting	Reduce channel erodibility	CH_EROD	0.6	0.15	
i lanting	Increasing channel roughness	CH_N2	0.14~0.28	0.24	
Contour farming/	Reduce overland flow	CN2	83	62	
Parallel terrace	Reduce sheet erosing	USLE_P	1.0	0.54	
Field border	Increase sediment trapping	FILTERW	0	5	
		POT_FR	0	0.3	
Farm retention pond	Present pothole	POT_TILE	0	0.1	
Pond		POT_VOLX	0	0.05	
Grade stabilization	Reduce gully erosion	CH_EROD	0.6	0.15	
structure	Decrease cover factor	USLE_C	Assigned by SWAT	0.05	

S3-Retention Ponds and Wetlands

Representation of wetland

Wetland : 0.3~0.5 m in depth 50 m X 400 m (2ha)

Capacity : 0.6 X 10⁴ m³ (normal season) 1.25 X 10⁴ m³ (rainy season)

Pond : 1.5~2.0 m in depth 50 m X 100 m (0.5ha)

Capacity : $0.75 \times 10^4 \text{ m}^3$ (normal season) 1.0 X 10^4 m^3 (rainy season)

S3-Retention Pond and Wetland

Representation of wetland

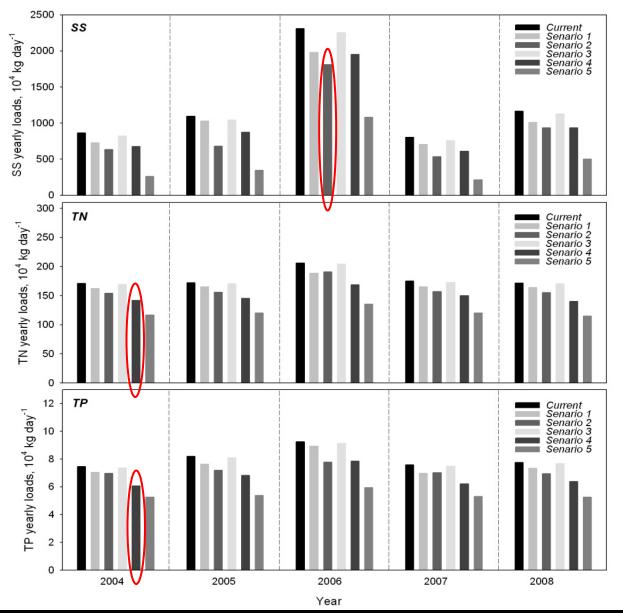
Variable Name	Definition	Values
IPND1	Beginning month of mid-year nutrient settling "season"	January
IPND2	Ending month of mid-year nutrient settling "season"	December
WET_FR	Fraction of sub-basin area that drains into wetland	0.02
WET_SED	Initial sediment concentration in wetland water	20 mg L ⁻¹
WET_NSED	Equilibrium sediment concentration in wetland water	5.00 mg L ⁻¹
WET_K	Hydraulic conductivity of bottom of wetlands	0.03 mm hr ⁻¹
PSETLW1	Phosphorus settling rate in wetlands for months IPND1 through IPND2	0.7 m yr ⁻¹
PSETLW2	Phosphorus settling rate in wetlands for months other than IPND1-PND2	0.7 m yr ⁻¹
NSETLW1	Nitrogen settling rate in wetlands for months IPND1 through IPND2	0.3 m yr ⁻¹
NSETLW2	Nitrogen settling rate in wetlands for months other than IPND1-IPND2	0.3 m yr ⁻¹

S3-Retention Pond and Wetland

Representation of pond

Variable Name	Definition	Values
PND_FR	Fraction of sub-basin area that drains into ponds	0.01
PND_SED	Initial sediment concentration in pond water	20 mg L
PND_NSED	Equilibrium sediment concentration in pond water	5.00 mg L ⁻¹
PND_K	Hydraulic conductivity of bottom of ponds	0.01 mm hr [.] 1
PSETL1	Phosphorus settling rate in pond for months IPND1 through IPND2	0.7 m yr ⁻¹
PSETL2	Phosphorus settling rate in pond for months other than IPND1-IPND2	0.7 m yr ⁻¹
NSETL1	Nitrogen settling rate in pond for months IPND1 through IPND2	0.3 m yr ⁻¹
NSETL2	Nitrogen settling rate in pond for months other than IPND1-IPND2	0.3 m yr ⁻¹
CHLA	Chlorophyll a production coefficient for ponds	1.00
SECCI	Water clarity coefficient for ponds	1.00
NDTARG	Number of days need to reach target storage from current pond storage	6 days
WUPND	Average daily water removal from the pond for the month (10 ⁴ m ³ day ⁻¹)	0.3

S4-Point Source Reduction


Reduction of WWTPs effluent

Sub- basins	Treatment plants	Capacity (m ³ day ⁻¹)	Extension capacity	Advanced treatment
13	Yongin ^a	48,000	SS : 50%	TN: 30%, TP: 30%
12	Ohpho ^a	7,000	SS : 50%	TN: 30%, TP: 30%
7	Konjiam ^b	20,000	SS : 50%	-
18	Kwangju ^a	5,000	SS : 50%	TN: 30%, TP: 30%
4	Kyongan ^b	25,000	SS : 50%	-

^a : High effluent concentration of WWTPs

^b: WWTPs are above 20,000 m³/day of wastewater treatment capacity

BMPs Results with SWA

Division of Climate Change, Environmental Strategy Research Group

Korea Environment Institute

Annual pollutant load reduction

		No BMPs	Scenario1	Scenario2	Scenairo3	Scenario4	Scenario5
SS	Load(kg day-1)	12,482,821	10,893,567	9,198,252	12,001,671	10,094,213	4,087,902
	Conc. (mg L ⁻¹)	12.72	11.45	10.27	12.01	10.00	7.36
	Efficiency (%)	-	12.5	27.9	4.4	20.3	64.3
ΤN	Load(kg day-1)	1,792,960	1,691,642	1,627,892	1,775,987	1,492,383	1,214,915
	Conc. (mg L ⁻¹)	4.86	4.65	4.50	4.83	4.21	3.61
	Efficiency (%)	-	5.5	9.3	1.0	16.7	32.2
TP	Load(kg day-1)	80,501	75,816	68,332	79,489	66,686	49,221
	Conc. (mg L ⁻¹)	0.245	0.233	0.216	0.242	0.211	0.169
	Efficiency (%)	-	5.9	14.8	1.3	17.3	38.7

Scenario 5

Scenario 2 and Scenario 4 >

(Scenario 1) >

Scenario 3

Conclusion and Future study

Division of Climate Change, Environmental Strategy Research Group

Korea Environment Institute

Conclusion and Future studies

- Modification of the database for BASINS
- Good calibration and validation in the KSW
- Useful to simulate and evaluate pollutant load in the watershed-scale
- Representation of BMPs into appropriate with SWAT
- Useful to propose the integrated watershed management strategy
- Analysis of BMPs cost-benefit effect
- Water quality impacts on Climate Change

Thank you for attention !! IUGUK XON IOL GLIGULIOU !!