Study on Setting Appropriate Size of Riparian Buffer Zone in Urban Basin by Using SWAT Model

2010. 8. 6

MOON, JONGPIL

Korean National Academy of Agricultural Science

- Recently, as the importance of managing nonpoint source pollution has increased, studies on riparian buffer zone, one of effective managing plans are conducted deeply in and outside the country.
- The size of riparian buffer zone are very Influential to the efficiency of pollutant emission mitigation.
- Factors considered when deciding the width of riparian buffer zone are land-use, status of vegetation and ground covering, slope, soil, regional characteristics and function.
- In this study, optimal width of riparian buffer zone was decided depending on the results of SWAT model which could be applied with considering above – mentioned factors in urban area.

Materials and Method

Targeting watershed

Survey of point source pollution

Survey of current situation of point sources pollution

Table 1 Target Level of Total Influent and Effluent Loads for Administrative Districts

		2002 Year						
	Administrative Districts		BOD ₅ (kg/day)		T-N(kg/day)		T-P(kg/day)	
Administra			Effluent LOAD	Source LOAD	Effluent LOAD	Source LOAD	Effluent LOAD	
Тс	otal	172,624	30,119	32,629	14,431	4,245	1,227	
Daejeon	City Sum	168,618	29,092	31,324	13,679	4,032	1,163	
	Donggu	23,157	3,440	5,017	881	572	95	
	Junggu	18,780	2,460	4,476	555	501	65	
Daejeon City	Seogu	36,838	5,716	8,538	1,387	1,054	153	
ony	Yuseonggu	27,191	11,253	6,508	9,354	722	653	
	Daeduckgu	62,652	6,222	6,785	1,501	1,183	197	
Chungcheor	Chungcheongnamdo Sum 4,006 1,027		1,305	752	213	64		
Chungcheong-g Namdo	Kyeryong City	2,560	538	768	407	89	31	
	Keumsangun	137	54	53	38	8	3	
	Nonsan City	1,308	435	484	308	117	31	

Survey of water quality and streamflow discharge

- Monthly data of water quality (2002~2005) : Provided by information system of water environment of the Ministry of Environment installed near Indong, Boksu and Hoeduck station.
- Daily data of streamflow (2002~2005) : Waterlevel data gauged at each station were changed to Daily streamflow dicharge with rating curve equation in table 2

Table 2 Yearly Stage-Discharge Equations for Stations

Station	Year	Stage - Discharge Equation	Range	
		$Q = 7.627h^{0.892}$	0.01≤h≤0.26	
Indong	2002 ~ 2003	$Q = 44.17h^{2.191}$	0.26 <h≤1.89< td=""></h≤1.89<>	
	2004 ~ 2005	$Q = 0.231 H^{-7.376}$	0.96 < H ≤ 2.75 (H = h +1)	
	2002	Q=0.041(h+0.782) ^{7.027}	0.16≤h≤1 . 14	
	2002	Q=-45.840h ² +472.963h-476.06	1.14 <h≤2.88< td=""></h≤2.88<>	
Dekey	2003 ~ 2004	Q=35.166(h-0.430) ^{3.672}	0.78≤h≤1 .80	
Boksu		Q=248.070(h-1.290) ^{1.182}	1.80≤h≤2 . 95	
	2005	$Q = 1.725(h + 0.172)^{8.01}$	1.00< h< 1.57	
	2005	Q = 318.469(h - 1.247) ^{0.693}	1.57< h< 2.67	
	2002~2003	Q =227.841(h-0.614) ^{1.549}	0.67≤h≤3 . 95	
Hoeduck	2004 2005	$Q = 234.477 \times (h-0.68)^{1.667}$	0.73≤h≤2.65	
	2004~2005	$Q = 436.918 \times (h-1.1)^{1.1589}$	2.65 <h≤4.07< td=""></h≤4.07<>	

Status of land-use

Status of land-use for each subbasin

In Boksu subbasin, forest and farmland account for 93% and urban area accounts for 4.4% and in Indong subbsin, forest and farmland 78% and urban area 14%. In Hoeduck subbasin which shows total status of subbasins in Gapcheon watershed, forest and farmland account for 75% and urban area 19%.

Figure.2 Status of land-use in Boksu, Indong and Hoeduck subbasin in Gapcheon watershed

SWAT model application

GIS input data

Dem(30m×30m)

Landcover(1: 25,000)

Soil (1: 25,000)

Hydrometeological data

Daily precipitation data and climatic data of Daejeon Observatory from Jan. 2002 to Dec. 2005 were input and as meteorological, temperature (maximum, minimum) and solar radiation data were used. Also, data of wind speed and relative humidity in Daejeon and Geumsan area were used

Construction of GIS data of riparian buffer zone

- Size(width) : 15, 30, 50, 100, 200, 300, 500, 1000m (from river bank)
- Plant species : Deciduous tree, Evergreen tree

Figure.3 GIS input data by the size of riparian buffer zone.

Calculation of discharging loads of point source pollution and delivery coefficient

Table 3 Administrative Occupied Ratio for Subbasins Table 4 Nutrients Delivery Ratio for Subbasins

SWAT2000 Subbasin (LD)	Administrative Occupied Ratio (Subbasin area / Daejeon city area)	ejeon city Subbasin(ID)		Nutrients Delivery ratio	
			T-N	T-P	
Gapcheon(Stream)	Seogu(0.76)+Yuseonggu(0.40) +Nonsan City, Kyeryoungcity,	Gapcheon Upstream(2) 0.84		0.41	
	Keumsankgun(Gapcheon A)	Gapcheon	0.67	0.20	
Gapcheon(Stream)	Seogu(0.16) + Yooseonggu(0.41)	Downstream(6)			
Yudeungcheon		Yudeungcheon Upstream(1)	0.48	0.11	
(Stream) upstream(1)	(yudeung A)	Yudeungcheon Downstream(3)	0.57	0.15	
Yudeungcheon (Stream) Downstream(3)	Seogu(0.080)+Junggu(0.24)	Daejeoncheon Upstream(4)	0.52	0.13	
Daejeoncheon (Stream) Upstream(4)	Donggu(0.70)+Junggu(0.16)	Daejeoncheon Downstream(5)	0.52	0.13	
Daejeoncheon (Stream) Downstream(5)	Donggu(0.29)+Junggu(0.02)+ Daeduck(0.04)				

Amount of applied fertilizer and amount of agricultural chemical usage

major crops and amount of applied fertilizer and agricultural chemical usage by each vegetative period were input.

Method for assessing model performing result Evaluation index(nash&sutcliffe value)method is mainly used for hydrologic model's evaluation and COE defined like the following.

$$COB = 1 - \frac{\sum_{i=1}^{n} (\beta_{i} - \beta_{i})^{2}}{\sum_{i=1}^{n} (\beta_{i} - \beta_{i})^{2}}$$

COE means evaluation index of discharge amount, n means comparison days,

- eta_{mi} means observed discharge amount, eta_{di} means presumed discharge amount, and
- $\overline{\beta}_{m}$ means average discharge amount through the whole period.

Application of SWAT model by the size of riparian buffer zone

Division of subbasins

Dividing the target watershed into 8 small subbasins, delivery loads were calculated by using the streamflow Discharge and data on water quality in Boksu, Indong and Hoeduck areas and 6 small basins which are upper basins in Hoedeok, the final verifying outlet Hoeduck were analyzed.

Fig. 4 Water Quality Investigation Sites and Point Source Locations (P: A Point Source Location, T : A Water Quality Investigation Site)

Determination of optimum parameter

Optimal parameters for streamflow discharge

Table 5 Optimized outflow Parameters for 3 sites

	Subbasin					
Parameter	ID 4 (Indong)	ID 1 (Boksu)	ID 6 (Hoeduck)			
CN	Initial CN + 4	Initial CN +8	Initial CN + 2			
SLOPE	0.328	0.264	0.096			
SLSUBBSN	0.038	0.050	60.976			
SOL_AWC	Initial SOL_AWC + 0.05	Initial SOL_AWC	Initial SOL_AWC			
ALPHA FACTOR	0	0.0087	0.0075			
GW_DELAY	0	115	132			

Optimal parameters for T-N and T-P load

Table 6 Optimized Parameters for T-N and T-P Loading of SWAT simulation

Daramatar	Gapcheon watershed		
Parameter	All subbasins (6 Subbasins)		
Phosphprus Percolation Coefficient (PPERCO)	14		
Phosphorus Soil Partitioning Coefficient (PHOSKD)	150		
Nitrate Percolation Coefficient (NPERCO)	0.4		

Results of calibration and validation

Calibration(2002~2003)

Table 7 Calibration Result for Streamflow)

	Estimated Calibration Results for Streamflow				
Station	Daily		Monthly		Total volume
	COE	R ²	COE	R ²	R.E.
Indong	0.48	0.51	0.62	0.77	11%
Boksu	0.50	0.52	0.74	0.80	22.5%
Hoeduck	0.67	0.69	0.86	0.87	11%

Table 8 SWAT Calibration Results for T-N and T-P load

	Г	Monthly	loadin	Total load		
Site	COE		R ²		R.E.	
	T-N	T-P	T-N	T-P	T-N	T-P
Indong	0.72	0.78	0.73	0.79	15%	7%
Boksu	0.67	0.70	0.68	0.74	20%	18%
Hoeduck	0.69	0.73	0.73	0.82	11%	16%

Validation(2004~2005)

Table.9 Verification Result for streamflow

	Est	imated	Verificat streamt	ion Resi flow	ults for
Station	Da	ily	Monthly		Total Volume
	COE	R ²	COE	R ²	R.E.
Indong	0.45	0.55	0.71	0.74	3%
Boksu	0.55	0.57	0.90	0.93	18%
Hoeduck	0.80	0.79	0.96	0.97	16%

Table 10 SWAT Verification Results for T-N and T-P load

		Month	Total load			
Site	COE		R ²		R.E	
	T-N	T-P	T-N	T-P	T-N	T-P
Indong	0.79	0.68	0.84	0.67	4%	3%
Boksu	0.69	0.59	0.65	0.80	11%	25%
Hoeduck	0.63	0.73	0.75	0.73	9 %	9 %

Validation (2004 ~ 2005)

4 Streamflow

2004/5/1

60

50

40

30

20

10

0

2004/1/1

Flow rate(CMS)

\rm 🕹 T-N

Results and discussion

Boksu

Deciduous

Evergreen

Land-use for Boksu subbasin is composed of 10% of farmland and stretches over the whole subbasin, so in case that 500m width of riparian buffer zone is set, farmland accounts for 2.6% of the zone, showing the gradual effect. It was found that for reducing 10% of discharging loads of T-N and T-P, 80m of deciduous trees or 70m of evergreen trees are needed. Amount of streamflow is constant in case of deciduous trees regardless of the size of riparian buffer zone and in case of evergreen trees, the amount has reduced.

Indong Lociduous

Evergreen

Land-use in Indong subbasin is composed of 14% of urban area and is located near a river. So, when making 500m width of riparian buffer zone, urban area accounts for 1.7%, showing very high reducing effect. Also, in order to reduce 10% of discharging loads of T-N and T-P, 70m of deciduous trees or 60m of evergreen trees are needed. When making riparian buffer zone with evergreen trees, amount of streamflow can be reduced.

Hoeduck Leciduous

Evergreen

In Hoeduck subbasin, urban area accounts for 19%, but this area is concentrated in the lower area of Gapcheon, having not so high effect. Also, in order to reduce 10% of discharging loads of T-N and T-P, 100~300m of deciduous trees can be effect but evergreen trees had effective at 100m but other case have no effect in reducing the loadings. Amount of streamflow was constant with deciduous trees regardless of the size of riparian buffer zone and it reduced with evergreen trees.

Conclusion

- COE index of monthly loads of T-N showed the value between 0.63 and 0.79 and that of T-N was 0.59~0.78, confirming that SWAT model has great applicability and reproducibility.
- The width of deciduous trees in Boksu subbasin was 80m and that of evergreen trees was 70m. That of deciduous trees in Indong subbasin was70m and that of evergreen trees was 60m. In case of Hoeduck subbasin, when the width of deciduous trees was 100~300m, reduced amount of discharging of total nitrogen and total phosphorus was -9.8% and -16.3% respectively and evergreen trees had effect at 100m but other case have no effect.
- Residential area with high density in Urban basin like Hoeduck Needs more precision analysis for sewage treatment system like a sewer pipe system which can make another NPS pollution in rainy season.

