

2010 International SWAT Conference & Workshops DEVELOPMENT AND APPLICATION OF THE SWAT MODEL

The Spatial Analysis between SWAT Simulated Soil Moisture, and MODIS <u>LST</u> and <u>NDVI</u> Products

Geun Ae PARK

Post-doctoral Researcher, Dept. of Civil and Environmental System Eng., Konkuk University, South Korea

Woo Yong HONG / Ji Wan LEE

Master of Engineering, Dept. of Civil & Environmental System Eng., Konkuk University, South Korea

Jong Yoon PARK Doctor course, Dept. of Civil & Environmental System Eng., Konkuk University, South Korea

Seong-Joon KIM Professor, Dept. of Civil & Environmental System Eng., Konkuk University, South Korea

Contents

- I. Introduction
- II. Process of This Study
- III. Material and Method
 - A. Study Watershed
 - **B. SWAT Model Description**
 - C. Input Datasets for Calibration and Validation of the SWAT Model
 - D. MODIS NDVI & LST for the Correlation Analysis
- **IV. Result and Discussion**
 - A. Model Calibration and Validation for the Streamflow
 - B. Model Calibration and Validation for the Soil Moisture
 - C. The Correlation Analysis between SWAT Soil Moisture and MODIS NDVI, LST
- V. Summary and Conclusion

Introduction

- Soil moisture is an important hydrologic component of water balance, and highly dependent on the surface temperature and its vegetation vitality under the spatial land cover condition.
- Recently, researches to evaluate the watershed scale soil moisture have been attempted by using <u>satellite products</u> to overcome the limited information of field scale soil moisture. The monitoring and modelling of land surface and/or vegetation processes by using satellite images viz. NOAA AVHRR and <u>Terra</u> <u>and Aqua MODIS</u> is now popular.
- MODIS NDVI and LST can be a useful indicator to analyze the soil moisture during the active growing of crop or plant, and to determine the soil moisture condition for drought monitoring (Narasimhan et al., 2005).
- This study is to identify how much MODIS NDVI and LST products can explain soil moisture of forest area by using <u>SWAT simulated soil moisture</u> results.

Process of This Study

Correlation Analysis between SM and NDVI, LST

Study Watershed

 Study area: 2,694.4 km² forest-dominant (93 %) watershed

The watershed was subdivided into 3 subwatersheds, which the division locations are <u>Wontong</u>, <u>Naerincheon</u>, and <u>SoyanggangDam</u> water level gauging stations.

The annual average precipitation is <u>1,359.5 mm</u>, and the mean temperature is <u>9.4 °C</u> over the last 30 years (1977 - 2006).

In the watershed, three measured soil moisture stations(<u>Inje</u>, <u>Chuncheon</u>, <u>Hwacheon</u>) was located.

SWAT Model Description

Soil and Water Assessment Tool (SWAT, developed by Arnold et al. in 1998)

$$SW_t = SW_0 + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_a - W_{seep} - Q_{gw})$$

SW_t = Final soil water content (mm)

SW₀ = Initial soil water content on day i (mm)

Q_{surf} = Amount of surface runoff on day i (mm)

 $E_a = Amount$ of evapotranspiration on day i (mm)

 W_{seep} = Amount of water entering the vadose zone from the soil profile on day i (mm)

 $Q_{qw} = Amount of return flow on day i (mm)$

Input Datasets for Calibration and Validation of the SWAT Model

Input Datasets for Calibration and Validation of the SWAT Model

Meteorological data

- Daily weather data (temperature, relative humidity, wind speed, sunshine hour) were collected from five stations (1998-2008)
- Daily rainfall data were collected from eighteen stations (1998-2008)

Streamflow and soil moisture data

- Daily streamflow data at the three water level stations were obtained (1998-2008) from the Ministry of Construction and Transportation.
- Daily soil moisture data were obtained from Agricultural Information System (2003-2008)

MODIS NDVI for the Correlation Analysis

MODIS NDVI

Spatial resolution: 250 m

- •Temporal resolution: 16 days
- •Wave length:

Band1(0.62-0.67 µm)

Band2(0.84-0.88 µm)

• NDVI:

(Band2-Band1)/ (Band2+Band1)

• The value of NDVI: 0.27-0.90

• NDVI of June, July and August is mainly high.

* MODIS LST for the Correlation Analysis

MODIS LST

- Spatial resolution: 1 km
- •Temporal resolution: 8 days
- •Wave length:
 - Band31(10.78-11.28 µm)
 - Band32(11.77-12.27 µm)
- Unit: Kelvin
- The value of LST: 252-300

• LST of May, June, July and August is mainly high.

Model Calibration and Validation for the Streamflow

- SWAT model setup process
 - ✓ No. of Subbasin : 20
 - No. of HRU : 348
- The calibrated model parameters at 3 sub-watersheds

Parameter	Description	Calibration Range	Wontong Optimal value	Naerincheon Optimal value	Soyanggang Dam Optimal value
CN2	Curve number adjustment ratio	± 20%	0	10	10
ESCO	Soil evaporation compensation	0.01 - 1	0.5	0.3	0.02
SOL_AWC	Available water capacity	± 20%	10	- 10	5
SFTMP	Snowfall temperature (°C)	- 5 - 5	1	1	1
SMTMP	Snow melt base temperature (°C)	- 5 - 5	0.5	0.5	0.5
SMFMX	Maximum snow melt factor (mm H2O/ºC-day)	0 - 10	4.5	4.5	4.5
SMFMN	Minimum snow melt factor (mm H2O/ºC-day)	0 - 10	4.5	4.5	4.5
TIMP	Snow pack temperature lag factor	0 - 1	1	1	1
LAT_TTIME	Lateral flow travel time (days)	-	3	3	2
GW_DELAY	Groundwater delay time (days)	0 - 500	180	150	180
CH_K2	Effective hydraulic conductivity of main channel	0 - 150	70	20	20

***** Model Calibration and Validation for the Streamflow

***** Model Calibration and Validation for the Soil Moisture

The Correlation Analysis between SWAT Soil Moisture and MODIS NDVI

Year	Rainfall (mm)	Temperature	Equation (R ²				
		(°C)	Deciduous	Mixed	Evergreen	Deciduous	Mixed	Evergree n
2000	235.3	13.4	y=-2.1393x+9.7736	y=+0.2865x+8.6856	y=-2.8548x+7.9764	0.21	0.01	0.28
2001	211.5	13.9	y=-25.223x+27.016	y=-20.147x+23.375	y=-17.178x+19.279	0.67	0.58	0.63
2002	286.1	13.7	y=+4.2162x+8.1402	y=+3.0535x+9.7578	y=+0.7755x+7.6458	0.12	0.08	0.01
2003	374.6	12.6	y=-16.213x+28.043	y=-17.309x+28.402	y=-14.574x+22.958	0.76	0.82	0.72
2004	356.6	13.1	y=+6.9717x+7.6368	y=+7.8776x+7.7714	y=+3.9831x+7.2158	0.41	0.51	0.28
2005	383.1	12.8	y=-16.709x+23.950	y=-15.855x+24.347	y=-14.713x+20.488	0.87	0.80	0.78
2006	405.7	12.5	y=+6.0098x+8.5721	y=+5.8201x+8.9483	y=+3.0951x+7.8093	0.68	0.65	0.36
2007	345.4	12.6	y=-23.683x+29.736	y=-21.503x+28.595	y=-21.457x+25.797	0.97	0.97	0.95
2008	290.4	12.6	y=-9.6834x+16.847	y=-3.1432x+13.596	y=-13.221x+16.962	0.42	0.08	0.61
Average	321.0	13.0	y=-4.8919x+17.7461	y=-6.7688x+17.0531	y=-8.4605x+15.1257	0.57	0.50	0.51
						Ave	rage : 0.5	3

The Correlation Analysis between SWAT Soil Moisture and MODIS NDVI

Year	Rainfall (mm)	Temperature (°C)	Equation (\mathbf{R}^2				
			Deciduous	Mixed	Evergreen	Deciduous	Mixed	Evergree n
2000	251.6	8.5	y=+28.532x+2.6753	y=+22.524x+5.0682	y=+28.514x+0.0186	0.53	0.42	0.68
2001	157.4	8.7	y=-7.6178x+18.133	y=-12.189x+21.008	y=-1.522x+11.287	0.09	0.26	0.01
2002	167.9	7.5	y=+18.698x+5.6075	y=+9.1336x+10.486	y=+19.81x+2.7876	0.80	0.43	0.76
2003	452.3	9.0	y=+35.537x-2.2618	y=+29.42x+0.3436	y=+32.665x-2.1686	0.91	0.81	0.92
2004	272.2	9.7	y=+38.851x-5.2091	y=+33.517x-3.1374	y=+36.596x-5.9488	0.92	0.89	0.87
2005	192.6	8.2	y=+18.317x+5.9039	y=+12.434x+8.909	y=+18.333x+2.8593	0.40	0.27	0.46
2006	254.9	9.4	y=-23.788x+29.401	y=-26.003x+30.399	y=-21.302x+26.778	0.69	0.74	0.69
2007	303.2	9.3	y=+38.124x-0.9763	y=+35.385x-1.5646	y=+36.384x-2.5936	0.99	0.99	0.99
2008	142.9	9.4	y=+13.144x+6.031	y=+6.1203x+8.5509	y=+11.297x+5.3715	0.20	0.11	0.16
Average	243.9	8.9	y=+17.755x+6.5894	y=+12.260x+8.8959	y=+17.864x+4.2657	0.61	0.55	0.62
						Ave	rage : 0.5	9

Forest leaf falling period (September – December)

The Correlation Analysis between SWAT Soil Moisture and MODIS LST

Year	Rainfall (mm)	Temperature (°C)	Equation	R ²				
			Deciduous	Mixed	Evergreen	Deciduous	Mixed	Evergree n
2000	235.3	13.4	y=-0.3067x+98.383	y=-0.259x+85.29	y=-0.3216x+100.42	0.93	0.81	0.94
2001	211.5	13.9	y=-0.9957x+301.32	y=-0.907x+275.08	y=-0.7868x+237.64	0.76	0.72	0.75
2002	286.1	13.7	y=+0.0334x+1.3174	y=+0.0087x+9.3033	y=-0.0446x+21.112	0.01	0.00	0.02
2003	374.6	12.6	y=-0.7597x+239.06	y=-1.036x+319.64	y=-0.8536x+262.53	0.67	0.75	0.60
2004	356.6	13.1	y=+0.2366x-56.321	y=+0.2586x-61.955	y=+0.0517x-5.1168	0.23	0.22	0.02
2005	383.1	12.8	y=-0.3572x+116.13	y=-0.3238x+107.17	y=-0.3257x+104.47	0.97	0.97	0.96
2006	405.7	12.5	y=+0.2779x-68.113	y=+0.2957x-73.039	y=+0.1918x-45.715	0.92	0.96	0.75
2007	345.4	12.6	y=-0.8283x+255.6	y=-0.3016x+101.23	y=-0.217x+73.14	0.77	0.65	0.57
2008	290.4	12.6	y=-0.3577x+115.1	y=-0.2812x+93.117	y=-0.3511x+111.27	0.48	0.55	0.35
Average	321.0	13.0	y=-0.3397x+111.39	y=-0.2828x+95.093	y=-0.2952x+95.528	0.64	0.63	0.55
						Ave	rage : 0.6	1

Forest leaf growing period (March – June)

The Correlation Analysis between SWAT Soil Moisture and MODIS LST

Year	Rainfall (mm)	Temperature (°C)	Equation	R ²				
			Deciduous	Mixed	Evergreen	Deciduous	Mixed	Evergree n
2000	251.6	8.5	y=+0.1306x-16.047	y=+0.0682x-0.2731	y=+0.182x-33.171	0.09	0.03	0.19
2001	157.4	8.7	y=+0.0839x-10.406	y=+0.0307x+4.7949	y=+0.124x-24.715	0.08	0.01	0.26
2002	167.9	7.5	y=+0.2633x-56.447	y=+0.1246x-18.914	y=+0.3427x-80.932	0.61	0.24	0.69
2003	452.3	9.0	y=+0.5498x-135.77	y=+0.4562x-111	y=+0.5928x-149.76	0.67	0.47	0.75
2004	272.2	9.7	y=+0.6502x-166.73	y=+0.5242x-132.68	y=+0.605x-156.21	0.69	0.42	0.55
2005	192.6	8.2	y=+0.312x-70.637	y=+0.277x-61.737	y=+0.3178x-75.354	0.92	0.90	0.93
2006	254.9	9.4	y=-0.5224x+163.16	y=-0.6088x+187.86	y=-0.5272x+163.28	0.87	0.91	0.93
2007	303.2	9.3	y=+0.7047x-179.51	y=+0.7278x-188.47	y=+0.7023x-181.27	0.90	0.91	0.88
2008	142.9	9.4	y=+0.1296x-23.155	y=+0.0665x-6.7377	y=+0.1592x-33.288	0.13	0.05	0.14
Average	243.9	8.9	y=-0.3397x+111.39	y=-0.2828x+95.093	y=-0.2952x+95.528	0.46	0.35	0.51
						Ave	raɑe : 0.4	4

The Comparison of Correlation Analysis

The Comparison of Correlation Analysis

Dariad	Casa	Rainfall (mm)	Temperature	R ²		
Penod	Case		(°C)	Deciduous	Mixed	Evergreen
Forest leaf	NDVI	221.0	12.0	0.57	0.50	0.51
growing	LST	321.0	13.0	0.64	0.63	0.55
Forest leaf	NDVI	243.9	8.9	0.61	0.55	0.62
falling	LST			0.46	0.35	0.51

Based on period

- ✓ Forest leaf growing period : LST (61 %) > NDVI (53 %)
- ✓ Forest leaf falling period : NDVI (59 %) > LST (44 %)

Based on case

- ✓ NDVI : forest leaf falling period (59 %) > forest leaf growing period (53 %)
- ✓ LST : forest leaf growing period (61 %) > forest leaf falling period (44 %)

Summary and Conclusions

- Due to the lack of soil moisture ground data, we need a pseudo indicator of soil moisture condition.
- This study was tried to investigate the correlations between SWAT simulated soil moisture (SM) and MODIS NDVI and LST how much the NDVI and LST can explain the soil moisture for the forest leaf growing and falling periods respectively.

- The soil moisture showed <u>high correlation</u> with the big inverse slope for NDVI and LST during the <u>forest leaf growing period</u> with the 9 years.
- The <u>low correlation</u> appeared <u>in case of dispersed storms</u> occurred during the period regardless of the leaf growing or falling periods.
- Yet, the study result include many uncertainty. So, in future, I will collect continuously MODIS data, and apply the other method.

Thank you for your attention!

This research was supported by a grant (07KLSGC03) from Cutting-edge Urban Development - Korean Land Spatialization Research Project funded by Ministry of Construction & Transportation of Korean government.

Contact

before 27 November 2010 to 02-444-0186 at Konkuk University, South Korea

After 28 November 2010 to University of Washington at Seattle, USA