History of Model Development at Temple, Texas

J. R. Williams and J. G. Arnold
INTRODUCTION

• Model development at Temple
 ➢ A long history (1937-present)
 ➢ Many scientists participating in:
 Data collection
 Component construction
 Structural design
 Validation
 Application
INTRODUCTION

• Model construction—a small group at Temple
 – USDA-Agricultural Research Service (ARS)
 – Texas AgriLIFE Research
 – USDA-Natural Resources Conservation Service (NRCS)

• Components, equations, etc.
 – Contributed by many scientists worldwide
 – Worldwide Scientific link provided
 – Additional expertise needed to develop comprehensive models
INTRODUCTION

TEMPLE MODELS

• ALMANAC, EPIC, APEX, SWAT
 – Operate on spatial scales ranging from individual fields to river basins
 – Daily time step
 – Continuously updated and improved as a result of user interaction and feedback
DATA COLLECTION - RIESEL

• Blackland Experimental Watershed-hydrological data collection program
 – Established in 1937 near Riesel, TX.
 – 57 rain gages and 40 watersheds
 – Established to analyze the impact of land use practices on:
 • soil erosion
 • flood events
 • water resources
 • agricultural economy

1938 – Calibrating gauging station W-2
MODEL DEVELOPMENT

• Started with hydrograph development and flood routing research in 1965
 – Background
 • 2.5 years experience in SCS flood control
 • New TR-20 flood routing model
 • Data from Riesel used in developing & testing hydrological models
 – Early models were single event models used as building blocks for today’s models
 • Focused on surface water hydrology and sediment yield
 – Rainfall excess estimated using SCS curve number method or Green & Ampt infiltration equation
 • Used in EPIC, APEX and SWAT
UNIT HYDROGRAPH
MODEL

• Two parameter gamma distribution
 – Rising limb
 – Peak
 – Recession to inflection point
• Exponential recession limb
 – Inflection point to base flow or zero
• For simulating runoff hydrographs from small Texas Blackland watersheds

• (1968)
• Tests showed recession limb depleted too rapidly in many cases
• Hydrograph modified
 – Two parameter gamma distribution
 – Double exponential recession limb

• (1973)
FLOOD ROUTING

- Variable travel time method (VTT)
- VTT converted to Variable storage coefficient (VSC)
 - Improve accuracy of storage flood routing
 - Convenience in computer solutions
 - Accounts for variation in travel time
 - Maintains correct water balance
 - Later included effects of water surface slope (Williams, 1975)
 - Included in APEX and SWAT

- (1969)
HYMO

- Problem oriented computer language
 - Consisted of
 - Runoff curve number
 - Unit hydrograph
 - VSC flood routing method
 - MUSLE (sediment yield)

- (1972)
MUSLE

- Single storm event sediment yield
- Introduced runoff energy factor
- Eliminated need for delivery ratio
 - Runoff factor represents energy used in detaching and transporting sediment
- (1975)
SEDIMENT ROUTING

• Based on
 – MUSLE
 – Exponential function of travel time and particle size
 – One routing coefficient determined for all sub-areas in a watershed
 – Provided estimates of sediment deposition from subarea outlet to watershed outlet
 – Did not locate deposition
 – Ignored degradation

• (1975)
SEDIMENT ROUTING

• Worked in conjunction with flood routing model
 – Transported sediment from reach to reach adding subarea contributions as flow was routed downstream
• Deposition similar to previous model
• Degradation component developed
 – Bagnold’s stream power equation
• Applies to individual routing reaches

• (1978)
SEDIMENT ROUTING

- Current model used in APEX and SWAT
- Modified Bagnold
 - Sediment concentration function of
 - Flow velocity
 - Sediment load
 - Particle size
 - Vegetative cover
 - Soil erodibility
- (2000)
WIND EROSION

• EPIC wind erosion model
 – Modified Manhattan, KS model (WEQ)
 • Converted annual to daily time step
 – Simulated
 » Vegetative cover
 » Tillage effects

• (1984)
WIND EROSION

• Current EPIC/APEX model
 – Wind Erosion Continuous Simulation (WECS)
 – Revised original model
 • Driven by daily wind speed
 – Bagnold’s equation
 • Function of daily wind run
 – Wind direction
 – Field orientation

• (1995)
CROP GROWTH

• CERES model
 – Simulated crop growth and yield in uniform field
 – Maize and wheat
 – Simulates effect on development, growth & yield as a function of:
 • Cultivar
 • Plant population
 • Weather
 • Soil

• (1986)
CROP GROWTH

- EPIC crop model
 - Used some concepts from CERES
 - Generic model simulates 100+ crops
 - Annuals/perennials
 - Field crops/pastures
 - Legumes
 - Trees/shrubs
 - Unique parameters for each crop

- (1989)
CROP GROWTH

• ALMANAC crop model
 – Based on EPIC crop model
 – Plant competition (up to 10 crops)
 • Assess impact of weeds on crop yields
 • Grown in same space
 • Compete for
 – Water
 – Nutrients
 – Light
WEATHER SIMULATION

• WGEN
 – Simulated daily
 • Precipitation
 • Temperature (max and min)
 • Radiation
 • Wind speed and direction

• (1981)
WEATHER SIMULATION

• WXGN
 – Combination of WGEN and CLIGEN
 – Used in all Temple Models
 – Simulates daily
 • Precipitation
 • Temperature (max and min)
 • Radiation
 • Relative humidity
 • Wind speed and direction

• (1984)
WATER YIELD MODEL

- Developed to estimate water yield from agricultural watershed
- Based on SCS curve number
- Continuous daily time step
- Soil moisture accounting
 - Driven by pan evaporation
 - One parameter optimized to match average annual water yield

(1976)
CREAMS

- Designed to evaluate non-point source pollution from field-size areas
- Components
 - Hydrology
 - Erosion
 - Nutrients
 - pesticides
- Daily time step hydrology
 - Surface runoff estimation
 - Based on SCS water yield model
 - Infiltration approach
 - Added ET and percolation
- Later revised to become GLEAMS
 - Emphasized pesticide fate
- (1980)
SWRRB

• Based on CREAMS daily hydrology
• Watershed scale
 – Subdivided
 – Spatial weather generator (CLIGEN)
 – Water and sediment yield (MUSLE)
 – Water & sediment balances for ponds and reservoirs
• Provided the basis for SWAT
• (1985)
SWRRB APPLICATIONS IN U.S. – 1980’S

• National Oceanic and Atmospheric Administration (NOAA) National Coastal Pollutant Discharge Inventory

• U.S. Environmental Protection Agency Pesticide Registration Model
EPIC
ENVIRONMENTAL POLICY INTEGRATED CLIMATE MODEL

• Designed to define the erosion-productivity relationship throughout the U.S.
• Field scale
• Components
 – Weather simulation
 • Weather generator
 – Hydrology
 • Runoff (CN or Green and Ampt)
 – Erosion-sedimentation
 • Wind and water
 – Nutrient cycling
• (1984)
EPIC

- Components continued
 - Plant growth
 - Tillage
 - Soil temperature
 - Economics
 - Management

- (1984)
EPIC

• Applications
 – Used to evaluate soil erosion impacts for 135 U.S. land resource regions
 – AUSCANE model (spin-off of EPIC) created to simulate Australian sugarcane production
 – Assessed the impacts of future climate change on U.S. corn, soybean, alfalfa, and wheat yields
 – Assessed impacts of typical Mayan culture agricultural cropping systems and practices on erosion and development of Mayan civilization
 – Assessed irrigation timing and amount strategies for sunflower in Southern Italy to determine critical growth stage for irrigation application
APEX
AGRICULTURAL POLICY / ENVIRONMENTAL EXTENDER MODEL

- Whole farm/watershed scale
- Subarea component (EPIC)
- Routing (water, sediment, nutrients, pesticides)
- Groundwater & reservoir
- Feedlot dust distribution
- Daily time step
- Capable of simulating 100’s of years
- (2000)
• Management capabilities
 – Irrigation
 – Drainage
 – Furrow diking
 – Buffer strips
 – Terracing
 – Waterways
 – Fertilization
 – Manure management
 – Lagoons
 – Reservoirs
 – Crop rotation and selection
 – Pesticide application
 – Grazing
 – Tillage
APEX

• Applications
 – Evaluate effects of global climate/CO$_2$ changes
 – Design environmentally safe, economic landfill sites
 – Design biomass production systems for energy
 – Livestock farm and nutrient management (manure and fertilizer)
 – Forest management
 – Evaluate effects of buffer strips nationally
 – Simulate runoff, erosion/sediment yield, nutrient and pesticide losses from cropland
SWAT
SOIL AND WATER ACCESSMENT TOOL

- Basin scale
- Based on SWRRB
- Readily available input—physically based
- Comprehensive-Process interactions
- Simulates streamflow (not just water yield),
 - subsurface flow (tile drainage)
 - groundwater flow
 - lateral flow

Upland Processes

Channel/Flood Plain Processes
SWAT

• Upland Processes:
 – Weather
 – Sedimentation
 – Plant Growth
 – Nutrient Cycling
 – Hydrology (impoundment, irrigation, subsurface)

• Continuous Time
 – Daily Time Step (sub-hourly)
 – 1 Day to 100s of Years

• Links with APEX, EPIC, ALMANAC

• AVSWAT-X interface
 (SSURGO soils, splitting tools, auto-calibration and uncertainty tools)

 – Pesticide Dynamics
 – Soil Temperature
 – Management (Agricultural & Urban)
 – Bacteria
SWAT

• Applications
 – Simulated hydrologic and/or pollutant loss impacts of agricultural & municipal water use, tillage and cropping systems trends (HUMUS)
 – Assess benefits of different conservation practices at scale national scale (CEAP)
 – Perform U.S Environment Protection Agency Total Maximum Daily Load (TMDL) analyses for impaired waters
 – Quantify the impacts of climate change
 – U.S. Environmental Protection Agency HAWQS National Environmental Assessment
PARTICIPATION IN OTHER MODEL DEVELOPMENT

- GLEAMS
- SPUR
- WEPP
- WEPS
- NLEAP