Challenges in Calibrating a Large Watershed Model with Varying Hydrogeologic Conditions

Presented by
Johnathan R. Bumgarner, P.G., Celine A.L. Louwers, & Monica P. Suarez, P.E.
In cooperation with the Lower Colorado River Authority

August 7, 2009
Outline

• LCRA CREMs
• Study Area
 - Colorado River
 - Highland Lakes
 - Lake LBJ Watershed
• Sub-basin Delineation
• Hydrology Calibration
• Conclusions

Source: sailingtexas.com
LCRA

- Lower Colorado River Authority (LCRA)
 - Texas conservation and reclamation district
 - Delivers electricity and manages the water supply and environment of the lower Colorado River basin, including the Highland Lakes
CREMs

- Colorado River Environmental Models (CREMs) Project
 - Integrated toolkit of watershed and water quality models
 - Diagnose existing water quality problems
 - Discern water quality trends
 - Predict the consequences of various management decisions and associated actions
Highland Lakes

- Run-of-river reservoirs
- LCRA Managed: Buchanan, Inks, Marble Falls, Travis, and Austin
- Habitat
- Hydroelectric power
- Recreation
- Municipal water supply
Lake LBJ Watershed

- Lake LBJ
 - Volume when full: ~134,000 acre-feet (0.17 km³)
 - Surface area when full: ~160 acres (0.7 km²)
- ~3 million acre (~12,000 km²) watershed spanning the Texas Hill Country, including the Llano Uplift, into West Texas
- Primarily rangeland brush and grasses
- Development occurring near and around the lake
Lake LBJ Sub-watersheds

- Total Area: ~3 Million Acres (~12,000 km²)
 - Llano River: 90%
 - Sandy Creek: 7%
 - Direct Drainage: 2%
Geology

- Cretaceous limestone karst
- Llano Uplift: Precambrian and Paleozoic igneous and metamorphic (crystalline) rocks

TWDB, 2006
Precipitation Contours

- West to east: From 22 to 32 inches per year (56-81 cm)
Soils

- STATSGO
- Parent rock → Soil type
- Calibration parameters varied by soil type

NRCS, 2006
Land Cover

- 71% Brush
- 13% Evergreen
- 9% Grasses
- 5.5% Deciduous
Sub-basin Delineation

- Watershed Ordinance
 - Stormwater runoff
 - Erosion controls
- Lake Segmentation
Primary Calibration Stations

- Llano at Junction: Limestone soils
- Sandy Creek: Crystalline
- Llano at Llano: Both
- Llano at Mason: Validation

Primary Calibration Stations

- 17 USGS and LCRA flow gages
- 4 Primary (3 Llano, 1 Sandy Creek)
Base Case Plots

Llano River near Junction (Reach 69)
- $R^2 = 0.89$
- $NS = 0.21$
- % Diff = 230.55
- POR = 1984 to 2008

Llano River near Mason (Reach 32)
- $R^2 = 0.75$
- $NS = 0.05$
- % Diff = 350.97
- POR = 1984 to 2008

Llano River at Llano (Reach 13)
- $R^2 = 0.76$
- $NS = 0.03$
- % Diff = 366.04
- POR = 1984 to 2008

Sandy Creek near Kingsland (Reach 63)
- $R^2 = 0.76$
- $NS = 0.21$
- % Diff = 242.73
- POR = 1984 to 2008
Calibration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>Subbasins</th>
<th>Orig. Value</th>
<th>Final Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>--</td>
<td>SCS Curve Number</td>
<td>Llano at Junction, Llano at Llano, Sandy Creek</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RNGB75%, Rest85% FRSE78% for FRSE (except TX151 no change), RNGB70%, Rest*72%</td>
</tr>
<tr>
<td>GW_DELAY</td>
<td>Day</td>
<td>Recharge to Discharge Delay</td>
<td>Llano at Junction, Llano at Llano, Sandy Creek</td>
<td>31</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>RCH_DP</td>
<td>--</td>
<td>Recharge % to Deep Aquifer</td>
<td>Llano at Junction, Llano at Llano, Sandy Creek</td>
<td>5</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>80%</td>
</tr>
<tr>
<td>SOL_AWC</td>
<td>--</td>
<td>mmH20/mmSoil</td>
<td>All</td>
<td>--</td>
<td>+0.04</td>
</tr>
<tr>
<td>ESCO</td>
<td>--</td>
<td>Evap Coefficient</td>
<td>All</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>EPCO</td>
<td>--</td>
<td>Uptake Coefficient</td>
<td>All</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>ALPHA_BF</td>
<td>Day</td>
<td>Baseflow recession constant</td>
<td>All</td>
<td>1</td>
<td>0.058</td>
</tr>
<tr>
<td>SOL_K</td>
<td>mm/hr</td>
<td>Soil Ksat</td>
<td>All</td>
<td>--</td>
<td>SOL_K*25%</td>
</tr>
<tr>
<td>CH_K2</td>
<td>mm/hr</td>
<td>Channel Keff</td>
<td>Llano at Junction, Llano at Llano, Sandy Creek</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Groundwater Parameters

- **CH_K2**: Channel hydraulic conductivity
 - Increased value, combined with delay, in karst areas simulated spring flow (1.5 mm/hr)
 - Bank storage then discharge to reach

- **GW_DELAY**: Groundwater discharge delay
 - 365 days in Karst areas
 - 0 days in Crystalline rock areas simulated groundwater transport and discharge isolated to shallow soils

- **RCH_DP**: Recharge to the deep aquifer
 - 80% in crystalline rock areas simulates losses to regional, fractured rock aquifer
Calibration Plots

- Llano River near Junction (Reach 69)
 - $R^2 = 0.88$
 - $NS = 0.91$
 - % Diff = 3.96
 - POR = 1984 to 2008

- Llano River near Mason (Reach 32)
 - $R^2 = 0.84$
 - $NS = 0.93$
 - % Diff = 15.02
 - POR = 1984 to 2008

- Llano River at Llano (Reach 13)
 - $R^2 = 0.82$
 - $NS = 0.91$
 - % Diff = 18.7
 - POR = 1984 to 2008

- Sandy Creek near Kingsland (Reach 63)
 - $R^2 = 0.89$
 - $NS = 0.91$
 - % Diff = 16.68
 - POR = 1984 to 2008
Calibration Metrics

- Good fit of model to data for Llano River (90% of total watershed)
- Satisfactory fit for Sandy Creek (7% of total watershed)

<table>
<thead>
<tr>
<th>Reach Name</th>
<th>% Watershed Area</th>
<th>R^2</th>
<th>Nash-Sutcliffe Coefficient</th>
<th>Volume % Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llano at Junction</td>
<td>37</td>
<td>0.83</td>
<td>0.81</td>
<td>-3.96</td>
</tr>
<tr>
<td>Llano at Mason</td>
<td>70</td>
<td>0.84</td>
<td>0.83</td>
<td>15.02</td>
</tr>
<tr>
<td>Llano at Llano</td>
<td>84</td>
<td>0.82</td>
<td>0.81</td>
<td>1.87</td>
</tr>
<tr>
<td>Sandy Creek near Kingsland</td>
<td>7</td>
<td>0.69</td>
<td>0.61</td>
<td>-16.68</td>
</tr>
</tbody>
</table>
Conclusions

• Successful calibration of Lake LBJ watershed hydrology required:
 - Attention to hydrogeologic conditions
 - Spring discharge
 - Regional aquifer flows out of the watershed.

• Providing large sinks for rainfall into the basins
Next Steps

- Calibrated watershed model hydrologic output will be used for lake model water balance.
- Calibrated hydrology is the first step in sediment and nutrient (P and N species) calibrations.
- Calibration parameters will be extrapolated to Inks Lake and Lake Marble Falls watersheds.
Acknowledgements and Contacts

• Lower Colorado River Authority (LCRA)
 - Lisa Hatzenbuehler, John Wedig, Bryan Cook, Dave Bass, Karen Bondy, Dennis Daniel, Suzanne Zarling

• Anchor QEA Staff
 - Jennifer Benaman, PhD, Elaine Darby, PE

• TAMU
 - Raghavan ‘Srini’ Srinivasan, PhD

• Contact: jbumgarner@anchorqea.com
Questions?