Water Quality Modeling Efforts to Assess the Impacts of Ethanol Corn Production in the Upper Mississippi River Basin

Paul R. Hummel¹, Anthony S. Donigian, Jr.¹, David Wells², Roberta Parry², and R. Srinivasan³

¹AQUA TERRA Consultants
²U.S. EPA Headquarters
³Texas A & M University

2009 5th International SWAT Conference August 5-7, 2009 Boulder, CO
Introduction – Why?

- Renewable Fuel Program established by Energy Independence and Security Act (EISA) mandates the use of 36 BG of renewable fuel by 2022
 - Includes 15 BG of ethanol from corn kernels by 2015

- Of potential biofuel crops, corn has highest rates of application of fertilizer and pesticides
 - Concerns over increased loadings of nutrients and sediments in surface waters
Introduction – Where?

Upper Mississippi River Basin (UMRB)

- High corn production
- Numerous corn ethanol plants
- High potential to impact surface water
- May be able to relate analysis to Gulf Hypoxia issues
- Prior modeling of UMRB by USDA available to use as starting point
Introduction – Where?

121.5 million acres; 131 HUC-8s; 14 HUC-4s
Introduction – How?

• Modeling
 – Establish baseline conditions
 – Develop future scenarios
 – Assess changes to water quality across scenarios

• What model?
 – Soil and Water Analysis Tool (SWAT)
SWAT Model

- Physically based
- Uses readily available inputs
- Comprehensive representation of watershed processes
- Can evaluate the relative impact of changes in management practices, land use changes, climate, and vegetation on water quality
SWAT Model

- Simulates crop and plant communities
- Provides crop yield and plant biomass
- Widespread use
- Prior applications of SWAT by USDA for hydrology and nutrient simulation in the UMRB completed and available as a starting foundation
- Should model the expected nutrient loads from increased corn production well
SWAT Inputs

- HUC boundaries
 - 8-digit HUCs
- Elevation Data
- Land Use
 - NLCD 2001
 - CDL 2000-2006
- Soil data
 - STATSGO
- Agricultural Practices
 - Tile drain potential
 - Tillage
 - Fertilizer/Manure
- Meteorological data
 - NCDC data 1960-2001
 - PRISM maps
- USGS Monitoring data
Elevation Data

• Source of:
 – Channel Length
 – Channel Slope
 – Overland Slope

• 30 meter (1:24K) and 90 meter (1:100K) DEM available

• Compared 30 vs. 90 meter DEM
 – Significantly higher processing for 30 m DEM
 – Difference in Overland Slope not significant
 – Test runs showed no significant difference in monthly & annual stream flow predictions

• 90 meter DEM selected to use in modeling
Land Use Data

- Final land use data was a combination of:
 - 2001 National Land Cover Data (NLCD 2001)
 - Cropland Data Layer (CDL, 2004-2006)
- NLCD classification defines non-ag land use types
 - Limited on specific cropland classes (row and hay crops)
- CDL focuses on cultivated land use
 - Classifies corn/soybean/rice/cotton agricultural regions in many of the Midwestern states and Mississippi delta
 - Uses remote-sensing imagery and on-the-ground monitoring programs
 - Crop rotation data - essential for nutrient management estimation and water quality modeling in Ag areas
Management Practices

Conservation Technology Information Center

Conservation Tillage
• No-tillage
• Ridge-tillage
• Mulch-tillage

Non-Conservation Tillage
• Reduced-tillage
• Intensive-tillage
Tile Drainage

- No recorded data, only research reports
- STATSGO data analyzed to identify poorly drained soils
- Areas with critical amount of poorly drained soils and low slope identified as tile candidates
Census of Agriculture - 2002 County Census

- Estimate number of animals for each HUC-8
- Hogs and Cattle considered predominate source
- ASABE manure production rates
Fertilizer and Manure

• Developed Fertilizer Rules
 – *Fertilizer is only applied to Ag lands*
 – *Applied to Hay, Corn, Row Crops*
 • Not legume crops such as alfalfa or soybeans
 • Need to account for corn-soybean rotations
 • Chemical fertilizer only applied to supplement manure applications

• SWAT set up to supplement manure application with chemical fertilizer as needed
 – *Based on nitrogen or phosphorus stress levels in plants*
Meteorological Data

- National Climatic Data Center (NCDC)
 - *Long-term historical data (1960 - 2001)*
 - *Daily precipitation and min/max temperature*

- Parameter–Elevation Regressions on Independent Slopes Model (PRISM) maps (Oregon State, 2008)
 - *Long-term monthly and annual precipitation and temperature*
 - *Compiled in ~4km grids nationally*

- Data aggregated to create unique weather station for each of 131 sub-basins (Di Luzio method, 2008)
Observed Data

- 13 USGS stations
- Stream flow and water quality data ranged from 6 years to 37 years in length
Scenario Development

Corn Yield Assumptions

- National average corn yield 150 bu/acre
- UMRB area-weighted average yield 140.7 bu/ac
- 1.23% annual yield increase based on USDA projections (USDA, 2008), to account for assumed advances in crop science
- Resulted in future yield averages:
 - 2010 – 149.6 bu/ac
 - 2015 – 159.0 bu/ac
 - 2020 – 169.0 bu/ac
 - 2022 – 173.2 bu/ac
Scenario Development

Biofuel Assumptions

- **National Corn Ethanol Production Goals:**
 - 2010 12 BG
 - 2015-2022 15 BG annually

- **UMRB estimated at 42.3% national production**
 - GIS overlay of current biofuel plants and UMRB

- **UMRB Estimated Ethanol Production**
 - 2010 5.1 BG
 - 2015-2022 6.3 BG annually
Scenario Results

Nitrogen Load

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Corn Area, 10^6 ac</th>
<th>Unit Load, lbs/ac</th>
<th>Total Load, 10^6 lbs</th>
<th>Outflow, 10^6 lbs</th>
<th>Removal (Assim), %</th>
<th>Corn Area Increase, %</th>
<th>Outflow Change, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>23.6</td>
<td>15.6</td>
<td>1,897</td>
<td>1,434</td>
<td>24.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>33.4</td>
<td>16.4</td>
<td>1,994</td>
<td>1,513</td>
<td>24.1</td>
<td>41</td>
<td>5.53</td>
</tr>
<tr>
<td>2015</td>
<td>35.6</td>
<td>16.3</td>
<td>1,976</td>
<td>1,500</td>
<td>24.1</td>
<td>50</td>
<td>4.66</td>
</tr>
<tr>
<td>2020</td>
<td>34.7</td>
<td>16.0</td>
<td>1,939</td>
<td>1,470</td>
<td>24.2</td>
<td>47</td>
<td>2.51</td>
</tr>
<tr>
<td>2022</td>
<td>34.4</td>
<td>15.9</td>
<td>1,926</td>
<td>1,460</td>
<td>24.2</td>
<td>45</td>
<td>1.82</td>
</tr>
</tbody>
</table>
Scenario Results

Phosphorous Load

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Corn Area, 10^6 ac</th>
<th>Unit Load, lbs/ac</th>
<th>Total Load, 10^6 lbs</th>
<th>Outflow, 10^6 lbs</th>
<th>Removal (Assim), %</th>
<th>Corn Area Increase, %</th>
<th>Outflow Change, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>23.6</td>
<td>1.45</td>
<td>177</td>
<td>132</td>
<td>25.0</td>
<td>41</td>
<td>2.79</td>
</tr>
<tr>
<td>2010</td>
<td>33.4</td>
<td>1.49</td>
<td>181</td>
<td>136</td>
<td>24.6</td>
<td>50</td>
<td>1.74</td>
</tr>
<tr>
<td>2015</td>
<td>35.6</td>
<td>1.47</td>
<td>179</td>
<td>135</td>
<td>24.6</td>
<td>50</td>
<td>1.74</td>
</tr>
<tr>
<td>2020</td>
<td>34.7</td>
<td>1.46</td>
<td>178</td>
<td>135</td>
<td>24.7</td>
<td>47</td>
<td>0.98</td>
</tr>
<tr>
<td>2022</td>
<td>34.4</td>
<td>1.46</td>
<td>177</td>
<td>133</td>
<td>24.7</td>
<td>45</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Scenario Results

Sediment and Flow

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Corn Area, 10^6 ac</th>
<th>Sediment, 10^6 tons</th>
<th>Flow, cfs</th>
<th>Sediment Change, %</th>
<th>Flow Change, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>23.6</td>
<td>6.34</td>
<td>122084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>33.4</td>
<td>6.37</td>
<td>122257</td>
<td>0.54</td>
<td>0.14</td>
</tr>
<tr>
<td>2015</td>
<td>35.6</td>
<td>6.36</td>
<td>122013</td>
<td>0.25</td>
<td>-0.06</td>
</tr>
<tr>
<td>2020</td>
<td>34.7</td>
<td>6.35</td>
<td>121819</td>
<td>0.16</td>
<td>-0.22</td>
</tr>
<tr>
<td>2022</td>
<td>34.4</td>
<td>6.35</td>
<td>121759</td>
<td>0.14</td>
<td>-0.27</td>
</tr>
</tbody>
</table>
Next Steps

- Alternative future scenarios
 - Revised ethanol goals
 - Cellulosic (corn stover)

- Sensitivity Analysis of SWAT model for UMRB

- Case Study of the Raccoon River, IA watershed
 - Characterize the impacts at the local level
 - Contains the following:
 - Ethanol plant
 - High corn production
 - Listed stream segment for nutrients (nitrogen)
 - Drinking water intake

- Comparison to other models
 - SPARROW
 - FASOM (Forest & Ag Sector Optimization Model)
Acknowledgment

This work was funded by the U.S. Environmental Protection Agency under contract # EP-C-06-029. The views expressed in this paper are those of the authors and do not necessarily represent those of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.