Rapid Geomorphic Assessment of Erosion Volumes for SWAT Calibration in Large Watersheds

P.M. Allen, B. Narasimhan J. Dunbar, S. Prochnow, S. Capello R. Srinivasan

When in trouble modeling, say nothing and try to look inconspicuous

Cedar Creek Project: Rapid Basin Assessment for SWAT Calibration

Erosion and Geology

Soils and Land Use

Soils and Land-use

More Cultivation/Urbanizing

More Forested/Less Cultivation

DATA for RGA & Sediment Budgets

 Monitoring Suspended Sediment and Bed Material and Gage Data
 Reservoir Surveys/Resurveys
 Inferential: Historical Air Photographs and Field Surveys
 Models

USGS Suspended Sediment Stations

About 21 Active Stations in Texas; 6 in the Blackland Prairie; most larger rivers

Uncertainty in Measured Data

Harmon, D. 2006 ARS USDA

SPARROW: USGS

A Regional Statistical Model of Gaged Data

Load Estimates

Cedar Creek Sediment: <u>Gage Data</u> Estimates

Tons/yr.	Minimum	25 th %	50 th %	75 th %	Maximum
Without Upstream	9519	266,538	1,875,282	3,931,430	8,557,761
Control	(104,711)	(266,538)	(428,364)	(1,589,706)	(3,588,738)
With Upstream Control	3836	107,415	755,739	1,584,366	3,448,778
	(42,340)	(107,310)	(172,645)	(640,575)	(1,446,130)

Simon et. al. 2004

Results for Watershed: Weighted by Province Average = 665,480 tons/year

Sediment Yield/Budgets

 Monitoring Suspended Sediment and Bed Material and Gage Data
 Reservoir Surveys/Resurveys
 Inferential: Historical Air Photographs and Field Surveys
 Models

Sediment Volume by "Old" Differential Bathymetry

Problem: No Precision for Sediment Volume Estimates

Cedar Creek Results: Bathymetric Resurvey Method

Volumetric Change = 41,276 ac/ft.
Density Assumptions @ 35 lbs/cuft
Yield = 790,000 tons year

New Method: Multi-frequency Acoustic Survey System

Results: Sub-bottom Acoustics

New Method: Survey Vessel

Vibracoring in Flood Control Reservoirs

Water Depth and Sediment Thickness in a Flood Control Reservoir

Cedar Creek Results:

Uniform thickness 1-2ft.

Cedar Creek: Results Sub-Bottom System Survey

- Sediment was uniform thickness from 1-2 feet from Sub-bottom acoustics; resurvey volumetric values reasonable for 40 year time period
- Sediment densities were 21.5 lbs/cuft. from core analysis
- Density x Volume = 492,247 tons/yr. total sediment
- REM: 790,000 Bathymetric; 665,480 Gage

Sediment Yeild/Budgets

 Monitoring Suspended Sediment and Bed Material and Gage Data
 Reservoir Surveys/Resurveys
 Inferential: Historical Air Photographs and Field Surveys
 Models

Field Assessment

Laser, Digital Camera, GPS

Assessment Date: / /2006 GPS Location: **Channel Slope** Drainage USGS 7.5 Area Acres Photos 1 Channel, Gully, Other If Gully Note: headcut height? 2 Riparian Vegetation: Note on bank **<u>3</u>** Texture: gravel, sand, silt, clay silty clay, loam 4 Reach Length Visible_____ft. Erosion Height Depth/Active Channel **Erosion Class** Erosion Class 5 Slight Slight Moderate Moderate 6 Bed Material Severe Severe Size (est.) 7 Bank Bank Processes Processes Slumps_ Slumps_ Wedge Wedge Infinite Infinite Slope_ Slope 8 **CEM Model Phase** I Stable II Degrading III Degrading and Widening IV Aggrading

Survey Form Stream

1. Stream Types: Will it Erode?

Threshold

2. Erosion: Implications

Type I

Type II

Type III Type IV

Channel Erosion Meandering/Degrading

Meandering Channel System

Degrading Channel System

Degradation CEI

Downcut = 3X Greater Erosion

Channel Evolution Model:

Degrading System

Predicted loss in 3 km channel erosion = 1000 years of sheet and rill erosion at preconservation agriculture rates

Cedar Creek: Field + Airphotos = Reach Classification

Visited 29 Locations; Analyzed 10 Historic Photos

Cedar Creek: Lateral Erosion Most Prominent 90% Channels

Cedar Creek: Degrading Channels About 10%

Cedar Creek: Degrading Channels CEM: I-II

Cedar Creek:CEM: II-III

Erosion Rates?

 Monitor: Best data but time consuming and costly
 Field Assessment of Erosion Coefficients: Submerged Jet Test (Hanson, 1990)
 Other Empirical Methods

Monitoring Erosion: Pins or Peeps

Erosion Pins and Duratrac

Erosion Rates?

 Monitor: Best data but time consuming and costly
 Field Assessment of Erosion Coefficients: Submerged Jet Test (Hanson, 1990)
 Other Empirical Methods

Cedar Creek: Submerged Jet Test

Hanson
Wynn
Allen
Simon

$$k_{d} = \frac{5.66\gamma_{w}}{\gamma_{d}} \exp[-0.121(c\%)^{0.41} \left(\frac{\gamma_{d}}{\gamma_{w}}\right)^{3.10}]$$

K~ Unit Dry Weight; % Silt Clay; Wet/Dry; Freeze Thaw

Erosion Rates?

 Monitor: Best data but time consuming and costly
 Field Assessment of Erosion Coefficients: Submerged Jet Test (Hanson, 1990)
 Other Empirical Methods

Results Monitoring: Worldwide Channel Erosion

Volume Erosion Channel: Methods

Griener Method (1982)	Channel/Gully Rate*Delivery Ratio
Wilkinson Method	0.5 Length *Height*Er*Density
Integration Method	Same above except allow for change width with length
SEDNET Method	.0001pgQS Stream Power
Gaged Data	Estimates Based on Simon's Sediment
Method	Yield Eq. and % channel erosion

Rate Erosion: Field Loss Rates

Lateral Recession Rate (ft/yr.)	Average (ft./year)	Category	Description
0.01-0.12	.0675	Slight	Some bare bank but active erosion not readily apparent. Some rills but no vegetative overhang. No exposed tree roots.
0.2-0.8	.5	Moderate	Bank is predominantly bare with some rills and vegetative overhang. Some exposed tree roots. No slumps.
0.5-1.4	.94	Severe	Bank is bare with very noticeable vegetative overhang. Many tree roots exposed and some fallen trees. Slumping or rotational failures are present. Some changes in cultural features such as missing fence posts and realignment of roads.

Quantify with Duratrac/Pin data

Sediment Density Values

Soil Textural Class	Dry Density For Design (tons/cubic foot)
Organic matter	0.011
Gravel	0.05
Sand	0.055
Silt	0.0425
Clay	0.035

Cedar Creek: Channel Erosion All Methods

Method	Modeled Channel Erosion (tons/year)
Model Calibrated Original Data	471,052 (Spatial Sciences Lab)
Griener Method (1982)	129,357 (adjusted for upstream reservoirs)
Wilkinson Method	168,182 (SWAT channel lengths)
Integration Method	151,359 (Drainage Area/Length)
SEDNET Method	197,684 (bare channel condition)
Gaged Data Method	225,922 (Assume Blackland 1/3 basin)
Mean (All Methods)	165,504

Field Data Taken at One Time: Past Land Use Changes?
Historical Air Photographs
10 year Intervals

Time Series Air Photographic Analysis Indicates Fairly Stable Land-use over the Basin Since the Reservoir Built

Sediment Yield/Budgets

 Monitoring Suspended Sediment and Bed Material and Gage Data
 Reservoir Surveys/Resurveys
 Inferential: Historical Air Photographs and Field Surveys
 Models

Soil and Water Assessment Tool

Jeff Arnold USDA-ARS, Temple, TX

Cedar Creek: Discharge

Average Monthly Inflow to Cedar Creek Reservoir

Channel Erosion

SWAT Modeled Erosion

Adjust to Field Data

Cedar Creek: SWAT/FIELD

Cedar Creek (Sediment)

Conclusions

- Sub-bottom Reservoir Survey Techniques with core should be considered the gold standard for assessing sedimentation rates (Cesium for older structures)
- RGA: by land use/physiographic province should be done
- Stream Monitoring: should be started; Pins, Peeps and Submerged Jet
- SWAT integral for prediction future changes under future Land Use, BMP, Climate etc. Field Data gives the past only.