

Hydrological impact assessment of afforestation and change in tree-species composition – a regional case study for the federal state of Brandenburg (Germany)

Martin WATTENBACH^{/*}, Marc ZEBISCH², Fred HATTERMANN³, Pia GOTTSCHALK⁵, Horst GOEMANN⁴, Peter KREINS⁴, Franz BADECK³, Petra LASCH³, Felicitas SUCKOW³, Frank WECHSUNG³

> ^{*/5} School of Biological Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK

² EURAC research, Institute for Alpine Environment, Viale Druso 139100 Bolzano, Italy

 ³ Potsdam Institute for Climate Impact Research Dep.: Global Change & Natural SystemsP.O. Box 60 12 03, 14412 Potsdam, Germany
⁴Institute of Rural Studies of the Federal Agricultural Research Centre, Bundesallee 50 38116 Braunschweig, German

outline

- The state of Brandenburg
- The scenarios for the case study
- Modelling cascade to derive land use pattern from economic boundary conditions
- A brief introduction to the forest version of SWIM model (Soil Water Integrated Model)
 - The forest sub-module
 - Spatial distribution of forest age and type
 - Forest water cycle interaction
- Aggregated results for the state
- Regional pattern
- Global uncertainty

area under study

subcontinental climate

models

BAT: Biodiversity Assessment Tool (GIS-**PAGE:**Pattern Generator pixel RAUMIS: Model for estimating the model) level (GIS model) regional distribution of national SWIM: Ecohydrological watershed model agricultural production (district level) Landscape Response **Primary Change** Composition Pattern PAGE **Quality BAT SWIM** ★ Biodiversity weak weak external + hydrology and fluxes change response driving forces ★ $\star\star$ 11% 89% $\star \star \star$ \star \star \star $\star\star\star\star\star$ strong strong $\star\star\star\star$ change response Response Score **Functions**

Tasks:	Scenario Definitions	Pattern Generation	Evaluation of Quality

Szenario I: succession at fallow land

Szenario II: change of species composition

Soil and Water Integrated Model (SWIM)

The forest sub-module

The spatial forest generator

Forest water cycle interaction

Aggregated monthly response scenario I

Aggregated response scenario II

Spatial pattern

results

change in mean AET

conclusions

- The forest module proved to be useful to simulate land use change on the scale of a federal state
- afforestation of abandoned arable land has an negative impact on the regional water balance
- a change in species composition from Scots Pine to Common Oak results in an positive impact on the regional water balance
- The global uncertainty analysis unveiled the dominant role of age as the main factor to explain variance in the AET
- however, even with age identified as the main factor the complex interaction of parameters needs to be in focus

