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Nitrogen cycling in Patagonia: Inputs

Patagonia: Among lowest rates of wet N deposition in World’s 
temperate forests. Point of comparison with forests in N. hemisphere 
that receive excess N from human activities.
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Nitrogen cycling in Patagonia: Outputs

South America N.E. USA

Hydrologic N losses from temperate forest watersheds in 
southern South America and eastern North America

•Simulation models that include nitrogen 
cycling often assume that nitrogen 
outputs in temperate climates are 
inorganic, especially nitrate and 
ammonium. 

•Human activities such as fossil fuel 
combustion, fertilizer production and 
land-use change have altered the 
nitrogen cycle in the northern 
hemisphere.

•Patagonia: Wet deposition and outputs 
often dominated by organic forms: 
represent an important test of models 
and assumptions from the northern 
Hemisphere.

(Perakis & Hedin 2002) 



Nitrogen cycling in Patagonia: Inside the box
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N cycling in Patagonia: Potential problems and questions

Users applying SWAT to unique basins should proceed with caution in order to 
make sure modeled processes in SWAT fit with what is known about a particular 
basin. 

Tree growth and organic residue
•SWAT inherited plant growth algorithms from EPIC model – created for agricultural settings, 
What are consequences for forested basins? 
•Because exogenous nutrient inputs into forests systems in southern Chile are minimal, 
litterfall is an important source of bioavailable P and N. Is residue production in SWAT 
reasonable?

Too much N in wet deposition
•The default value of the RCN parameter (nitrate in precipitation) in SWAT is 1 mg/L. 
•Can better results might be obtained if the N in precipitation could be divided into its major 
fractions (NO3, NH4, DON) and introduced directly into the appropriate pools?

Tree classes in Crop database 
•Default crop types for forested systems are limited. 
•Can custom crop classes aid in approximating the unique N cycles in Patagonian forests?  



N cycling in Patagonia: Objectives and Methods

Objectives:
•Approximate pools and fluxes of N in a Patagonian watershed by fine-tuning 
existing algorithms in SWAT and without incorporating a full accounting of 
the carbon cycle. (rationale: maintain simplicity, avoid additional data needs)

•Produce a SWAT output file that expedites the visualization and analysis of 
nutrient cycles for the entire basin and for different types of HRU. 

Methodology:
•Adjustment of N input in precipitation by modifying SWAT to accept major N 
fractions (NO3, NH4, DON) 
•Creation of custom crop types for Patagonian forests, 
•Manual calibration aimed at approximate pools and fluxes of N
•Modify SWAT according to MOHID philosophy to produce output files that 
include all nutrient pools and fluxes (Chambel-Leitão et al. 2007). 
•Create a macro in MS Excel in order to facilitate the visualization and 
analysis of nutrient cycles.



Aysén River Basin: Location and Characteristics

The Aysén Basin is located between 45°S and 46°S

•Surface area: 11,456 km2

•Mean slope: 16.5%
•Strong precipitation gradient:

>4000 mm yr-1 on west side to <600 mm yr-1 in east

Landuse :
Forested: 46.6%  Pastures: 29.3% Wetlands 1.2%
Rock, snow/glaciers, tundra, unclassified areas: 21,3% 
Urban and agricultural areas 0.2% 



Aysén River Basin: Precipitation Station Setup

AVSWATX 
assigned 
stations



Aysén River Basin: Precipitation Station Setup

Manually-assigned 
stations



Aysén River Basin: Vegetation

New SWAT Land Cover Classes and existing tree class es
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Aysén River Basin: Hydrodynamics

Comparison of observed and modeled average monthly flows and daily 
and monthly R 2 and model efficiency statistics
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Aysén River Basin: Residue production

•In SWAT2000, interannual tree growth did not occur
•In SWAT2005, tree growth from sampling to mature tree is able to occur 
•Under default tree parameter sets a large fraction of annual biomass production 
is removed as yield or converted to residue, resulting in minimal growth of 
persistent biomass 
•Our strategy is to ignore total biomass of a forest system and calibrate residue 
production to achieve realistic nutrient cycling

Biomass production with SWAT2000 and SWAT2005 for Nothofagus pumilio (BCAY).



Aysén River Basin: Residue production

•In SWAT2000, interannual tree growth did not occur
•In SWAT2005, tree growth from sampling to mature tree is able to occur 
•Under default tree parameter sets a large fraction of annual biomass production 
is removed as yield or converted to residue, resulting in minimal growth of 
persistent biomass 
•Our strategy is to ignore total biomass of a forest system and calibrate residue 
production to achieve realistic nutrient cycling
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Aysén River Basin: Nutrient export

•The average measured NO3 value was 0.048 mg/l while SWAT NO3 
output for the corresponding reach was 0.053 mg/l. This difference was 
not statistically significant (t= 0.91, p=0.37, gl=27). 

•The same simulation set up, run with RCN = 1 gives a NO3 
concentration in the reach of 0.23 mg/L, which is higher than even the 
highest measured value. 

Estimated annual nitrogen and phosphorus loads from  diffuse sources.
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Aysén River Basin: Nitrogen cycle

•In general, the values of the annual N cycle processes are within the 
range of literature values given in the previous figure. 

Output of SWAT2005 after calibration and changes fo r BCAY forest type (kg N ha-1 yr-1)
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Discussion

•Denitrification: model and field data have a poor match. 

•CDN (denitrification exponential rate coefficient) was left at its 
default value. Further calibration may be waranted.

•little published denitrification data may be too low for Aysén where 
the high rainfall and high organic soil matter should allow for more 
denitrification. 

•Net mineralization occurs consistently during the simulation period. 

•This might act to drive more denitrification than would otherwise 
occur. 

•A qualitative indicator is the ratio of external:internal N cycle fluxes.

• Current setup gives a value of 0.4. This fits with statements by 
Pérez and colleagues (2003a) that the N cycle in Patagonian 
forests tends to be tight with much internal cycling. 



Conclusion

•Took steps to improve the performance of SWAT2005 in watersheds dominated 
by relatively unpolluted temperate forests. 

•Strategy was to make incremental modifications instead of adding more 

complex routines requiring additional parameterization or input data. 

•Improvement in results:

•the ratio of organic N to inorganic N in river water has decreased as we 
have calibrated and then modified the model. 

•the annual fluxes in the SWAT N cycle for the BCAY cover class 

corresponded to those gleaned from the literature. 

•We conclude that SWAT2005 is capable of simulating the N cycle in this unique 
forested system. However, with more data, new algorithms for forest dynamics 
would likely produce better results.    



Conclusion

•We used a SWAT2005 version in which the source code was partially 
modified—the inputs and outputs of the model—using MOHID’s code and 

programming philosophy (Chambel-Leitão et al. 2007). This has improved 
analysis and visualization of admittedly complicated N cycles in large basins. 

Furthermore, a macro created in Excel allows nutrient diagrams to be rapidly 
produced. 

•Further work:

•Identification the most pressing gaps in field data. 

•Production of a working set of tools and models for managers and policy 
makers for the Aysén Basin (ECOManage Project) 

•Potential utility of using SWAT with the three wet deposition compartments 

(NH4, NO3, and DON) as a way to study the potential effects of increasing 
anthropogenic N emissions worldwide and the interactions between climate 

change and biogeochemical cycles. 
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