Considering Measurement Uncertainty in H/WQ Model Evaluation

Daren Harmel – USDA-ARS, Temple, TX Patti Haan-Smith – Texas A&M Univ., College Station, TX

Measurement Uncertainty in H/WQ Modeling

- "Should it not be required that every... (field and modeling study) ...attempt to evaluate the uncertainty in the results?"
 - Beven. 2006. On undermining the science? *Hydrol. Process.* 20:3141-3146.
- "The use of uncertainty estimation... (should be)...routine in hydrological and hydraulic science."
 - Pappenberger and Beven. 2006. Ignorance is bliss: Or 7 reasons not to use uncertainty analysis. *Water Resources Res.* 42(5):xx-xx.
- Haan (1995) suggested that uncertainty analysis in H/WQ modeling represents intellectual integrity
- Reckhow (1994) emphasized the importance of communicating uncertainty to stakeholders and decision-makers to improve policy and management decisions

Measurement Uncertainty in H/WQ Modeling

- An important source of uncertainty in H/WQ modeling is measurement uncertainty.
- However, when "measurement uncertainty" is included in uncertainty analysis
 - focuses almost exclusively on model inputs or parameter estimation (e.g. hydraulic conductivity, CN, fertilizer application)
 - does *not* address uncertainty in measured data, against which model outputs are compared (e.g. flow, water quality)
- This research focuses on uncertainty in measured data used to calibrate, validate, or evaluate H/WQ models.

Measurement Uncertainty in H/WQ Modeling

- Why is the uncertainty in measured H/WQ data typically not considered in model calibration, validation, and application???
 - Until recently...

Agricultural Research Service

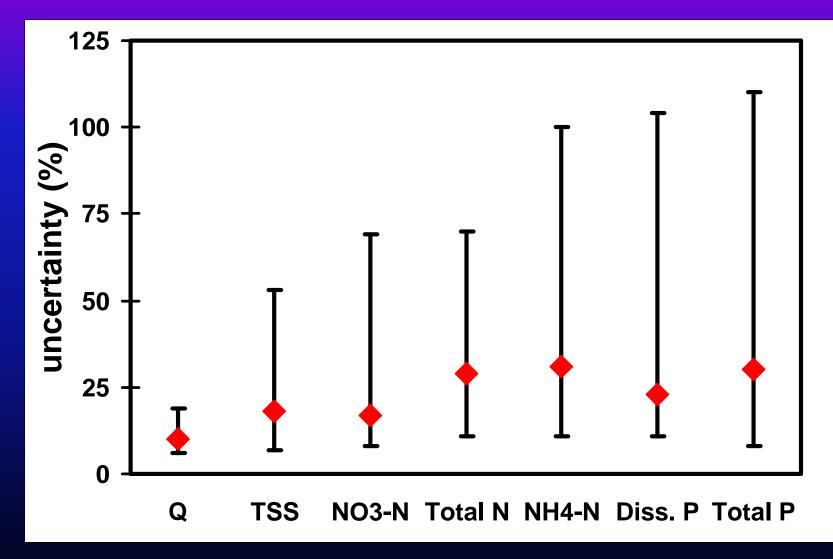
- Scientists had not established an adequate understanding of uncertainty in measured H/WQ data
- No complete uncertainty (error propagation) analysis had been conducted on measured H/WQ data
- No goodness-of-fit methods had been developed to explicitly consider measurement uncertainty

Objectives

- Objective #1 Briefly describe a method for estimating the "quality" of calibration, validation, and evaluation data
 - Fundamental scientific estimates
 - Methodology for project-specific uncertainty analysis
 - Focused on uncertainty in measured streamflow and water quality data (TSS, N, P) for small watersheds
- Objective #2 Describe modified versions of several "goodness-offit" indicators that consider measurement uncertainty in H/WQ model evaluation
 - E_{NS} , d, RMSE, MAE

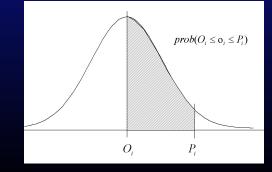
- Root mean square error propagation method (Topping, 1972)
 - includes all steps required to measure flow and water quality data
 - widely-accepted error propagation method
 - previously used for discharge, pesticides
 - combines all potential errors to produce realistic estimates of overall error (cumulative probable uncertainty)
 - assumes potential errors are bi-directional and non-additive

$$E_{P} = \sqrt{\sum_{i=1}^{n} \left(E_{1}^{2} + E_{2}^{2} + E_{3}^{2} + \dots + E_{n}^{2} \right)}$$

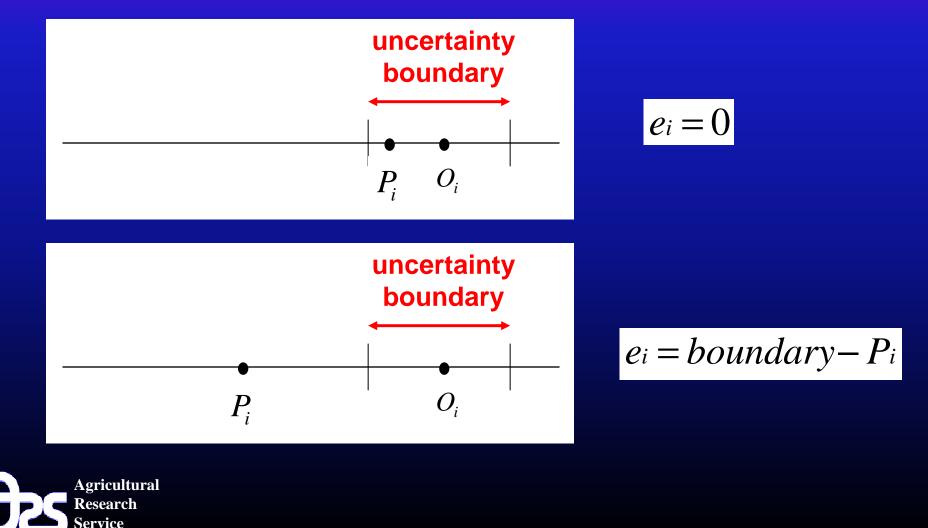


- Created several arbitrary "data quality" scenarios
 - best case, worst case, typical based on QA/QC, available resources, and monitoring conditions
- Categorized uncertainty sources into procedural categories
 - Q measurement, sample collection, sample preservation and storage, laboratory analysis
- Calculated cumulative uncertainty in resulting data

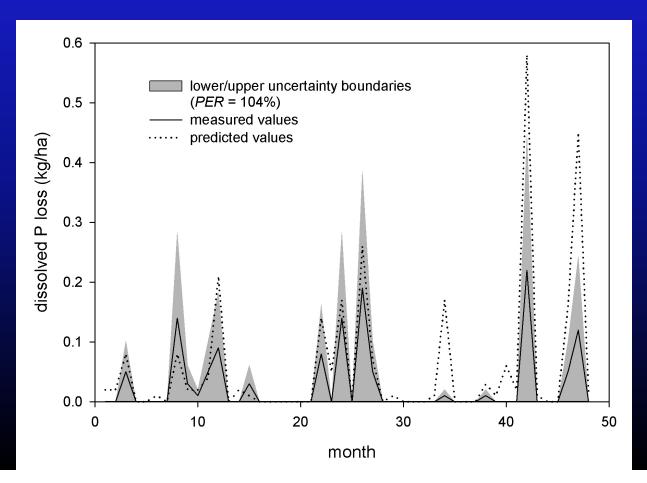
		Q (%)	TSS (%)	NO3-N (%)	Total P (%)	
Previous Data	Worst case scenario	42	117	421	249	Worst
	Typical scenario max.	19	53	69	110	Case
	Typical scenario avg.	10	18	17	30	
	Typical scenario min.	6	7	8	8	
	Best case scenario	3	3	4	3	


Agricultural Research Service

- Measurement uncertainty should be considered when evaluating H/WQ models
- Specifically, H/WQ models should:
 - not be expected to simulate/reproduce uncertain data values
 - produce output within the uncertainty range of measured data
- The error term (e_i = O_i P_i) appears in several popular model goodness-of-fit indicators
 - e.g. E_{NS}, *d*, RMSE, MAE
- This error term should be modified to reflect measurement uncertainty

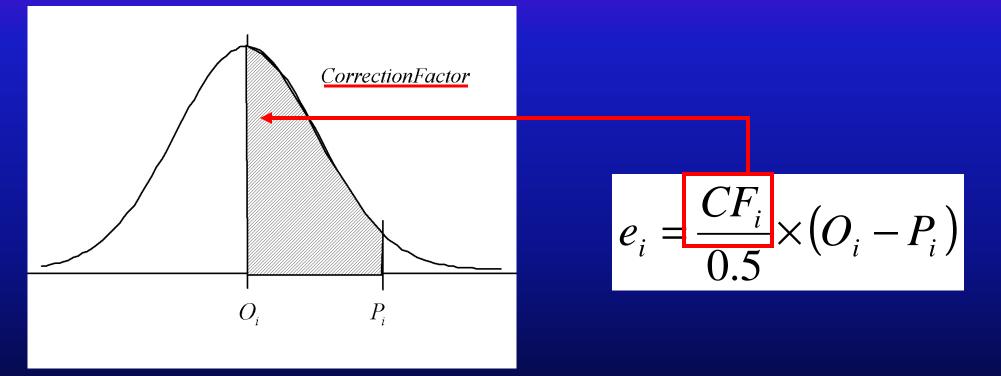

- Developed two error term modifications, based on available measurement uncertainty information.
 - Modification 1 is most appropriate if:
 - only uncertainty boundary is known (+/- %)
 - probability distribution cannot be reasonably assumed
 - Modification 2 is most appropriate if:
 - distribution of uncertainty is known or reasonably assumed

Modification 1- if only uncertainty boundary is known



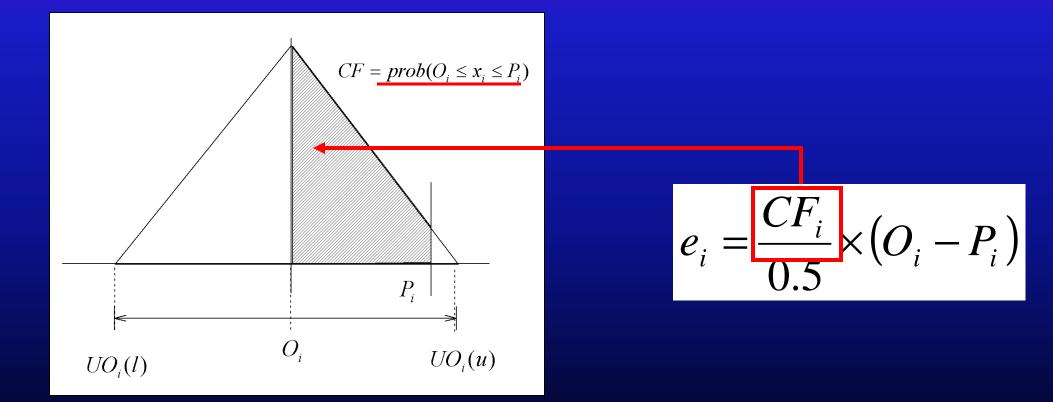
- Modification 1 provides conservative goodness-of-fit estimate
 - Goodness-of-fit improves substantially because minimize e_i
 - Facilitates visual assessment

Agricultural


Research

Service

Modification 2 - if distribution of uncertainty is known



In Modification 2, the probability distributions represent possible measured values for each point (O_i) not for the entire population of measured data.

Modification 2 - if distribution of uncertainty is known

- Modification 2 provides more realistic estimate of e_i when distributional information of measurement uncertainty known or reasonably assumed
 - Goodness-of-fit increased only slightly for measured data with little uncertainty.
 - Modest improvement when data with substantial uncertainty were compared with both poor and good model predictions.
 - Important result poor performance shouldn't appear satisfactory because of measurement uncertainty, especially for large model structure errors

Recent Model-Related Uncertainty Pubs.

- Harmel, et al. 2006. Cumulative uncertainty in measured streamflow and water quality data for small watersheds. *Trans. ASABE* 49(3): 689-701.
- Shirmohammadi, et al. 2006. Uncertainty in TMDL models. *Trans.* ASABE 49(4):1033-1049.
- Harmel and Smith. 2007. Consideration of Measurement Uncertainty in the Evaluation of Goodness-of-Fit in Hydrologic and Water Quality Modeling. J. Hydrology 337:326-336.
- Moriasi, et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50(3):xxx-xxx.

Conclusion and Acknowledgments

- **Conclusions related to H/WQ modeling...**
 - no longer acceptable to not consider uncertainty in H/WQ modeling
 - advantageous for modelers to quantify the "quality" calibration, validation, and evaluation data
- Insight and groundbreaking work by many contributed to the foundation for this research.
 - Richard Cooper, Ken Reckhow, Keith Beven, Florian Pappenberger, Dmitri Kavetski, Ann van Griensven (and her colleagues), Bruce Beck, Tom Haan, Dan Storm, Raymond Slade.

Upcoming Research on H/WQ Data Uncertainty

- Refine the uncertainty estimation method to facilitate estimation in measured H/WQ data
 - Procedure, field/data form, simple spreadsheet
- Push for increased emphasis on sample collection in QA
- Emphasize benefits of uncertainty estimates accompanying measured H/WQ data sets
- Apply modified goodness-of-fit indicators in H/WQ modeling and other fields
- Incorporate uncertainty estimates and modified goodness-of-fit indicators in SWAT, EPIC/APEX interface

Any Questions??

Daren Harmel, PhD USDA-ARS 808 E. Blackland Rd. Temple, TX

(254) 770-6521 dharmel@spa.ars.usda.gov

http://www.ars.usda.gov/spa/dharmel

