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W ater shed M odels

Hydrologic/water quality modeling to support
decision making:

— Flood management

— Nonpoint source pollution

— Impacts of land use change/urbanization
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Evolution of water shed models:

— Lumped to distributed
 Remotely sensed data and GIS

— Finer spatiotemporal resolutions

— Empirical to physically-based

— Incorporation of more input and output variables
— Improving model performance
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Tradeoffs between complexity, performance and
identifiability:

SWAT2000
(Kalin and Hantush, 2003)

Per formance
| dentifiabbility

Complexity



This Presentation

Objective:
— To develop a computational tool for model iden#fion
— To demonstrate the tool in a case study
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|n-Stream N Processesin SWAT

Optional in-stream component (QUAL 2E):
— It is left to the user to be activated
— It Is not activated by default

Comparison of two models
— Model 1: in-stream processes were not activated
— Model 2: in-stream processes were activated



|n-Stream N Processesin SWAT

Optional in-stream component (QUAL 2E):
— It is left to the user to be activated
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The Approach
Sampling-based approach:

— Structural complexity:
 Number of input parameters and operatidasrsen Matrix
 Linearity: Multivariate linear regression analysis
e Multivariate interactionsTree-Sructured Density Estimation

— Performance:
* Goodness-of-fit measures (e.g., Nash-Sutcliffefftoent)
« Genetic algorithm optimization engine

— ldentifiability:
e Single parameters
o Overall identifiability
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The Approach

The genetic-algorithm optimization engine:
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The genetic-algorithm optimization engine:




The Case Study
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Sampling-based approach:

— Structural complexity:
 Number of input parameters and operatidasrsen Matrix
 Linearity: Multivariate linear regression analysis
e Multivariate interactionsTree-Sructured Density Estimation

— Performance:
» Goodness-of-fit measures (e.g., Nash-SutcliffeffRoent)
» Genetic algorithm optimization engine

— Ildentifiability:
» Single parameters
» Overall identifiability



| dentifiability:
Single parameters:
Regional Sensitivity
Analysis

The Approach

04+

0.3

0.2

0.1

Monthly Sediment Yield (t/ha)

-0.1

Non-Behavio
Simulations

Behavior Simulations
E..>=0.3

-0.2 ‘

\
Jan74 June74

| |
June75 Jan76 June76 Jan77

Time (Month)

Jan75




The Approach

| dentifiability:
Single parameters:
Regional Sensitivity
Analysis
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The Approach

| dentifiability:
— Overall model structure:

Tree-structured density estimation

|dentifiability Criterion
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The Case Study

The Tradeoff Plot:
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Closing Remarks

Utility of thetool
— Testing new improvements in model structure
— Testing new spatiotemporal discretization schemes

Advantages

— Provides a unified framework for future model
enhancements

— Facilitates communication between different redear
groups working on different aspects of the model

— Can potentially guide integration of models tha¢m@ate at
different spatial/temporal scales



Acknowledgments

Questions?

Mazdak Arabi
Voice: (765) 494-1134
mar abi @purdue.edu

web.ics.purdue.edu/~marabi



