A Tool for Identification of Model Structure

Mazdak Arabi Bernie Engel Jane Frankenberger

Date: 06-July-2007

CE School of Civil Engineering 550 Stadium Dr., West Lafayette, IN 47907

Agricultural and Biological Engineering 225 South University, West Lafayette, IN 47907

Watershed Models

Hydrologic/water quality modeling to support decision making:

- Flood management
- Nonpoint source pollution
- Impacts of land use change/urbanization

• • •

Watershed Models

Hydrologic/water quality modeling to support decision making:

Flood management

. . .

- Nonpoint source pollution
- Impacts of land use change/urbanization

Evolution of watershed models:

- Lumped to distributed
 - Remotely sensed data and GIS
- Finer spatiotemporal resolutions
- Empirical to physically-based
- Incorporation of more input and output variables
- Improving model performance

Model Structure

Tradeoffs between complexity, performance and identifiability:

Model Structure

Tradeoffs between complexity, performance and identifiability:

Model Structure

Tradeoffs between complexity, performance and identifiability:

This Presentation

Objective:

- To develop a computational tool for model identification
- To demonstrate the tool in a case study

This Presentation

Objective:

- To develop a computational tool for model identification
- To demonstrate the tool in a case study

Fate and transport of ammonia nitrogen in Cedar Creek

In-Stream N Processes in SWAT

Optional in-stream component (QUAL2E):

- It is left to the user to be activated
- It is not activated by default

Comparison of two models

- Model 1: in-stream processes were not activated
- Model 2: in-stream processes were activated

In-Stream N Processes in SWAT

Optional in-stream component (QUAL2E):

- It is left to the user to be activated
- It is not active by default

Sampling-based approach:

- Structural complexity:
 - Number of input parameters and operations: *Petersen Matrix*
 - Linearity: Multivariate linear regression analysis
 - Multivariate interactions: *Tree-Structured Density Estimation*
- Performance:
 - Goodness-of-fit measures (e.g., Nash-Sutcliffe Coefficient)
 - Genetic algorithm optimization engine
- Identifiability:
 - Single parameters
 - Overall identifiability

Sampling-based approach:

- Structural complexity:
 - Number of input parameters and operations: *Petersen Matrix*
 - Linearity: Multivariate linear regression analysis
 - Multivariate interactions: *Tree-Structured Density Estimation*
- Performance:
 - Goodness-of-fit measures (e.g., Nash-Sutcliffe Coefficient)
 - Genetic algorithm optimization engine
- Identifiability:
 - Single parameters
 - Overall identifiability

The genetic-algorithm optimization engine:

The genetic-algorithm optimization engine:

The Case Study

Performance:

Sampling-based approach:

- Structural complexity:
 - Number of input parameters and operations: *Petersen Matrix*
 - Linearity: Multivariate linear regression analysis
 - Multivariate interactions: *Tree-Structured Density Estimation*
- Performance:
 - Goodness-of-fit measures (e.g., Nash-Sutcliffe Coefficient)
 - Genetic algorithm optimization engine
- Identifiability:
 - Single parameters
 - Overall identifiability

Identifiability:

Single parameters:

Regional Sensitivity

Analysis

Identifiability: Single parameters: *Regional Sensitivity Analysis*

Identifiability:

- Overall model structure:

Tree-structured density estimation

Identifiability Criterion $IC = \frac{m_T}{m} \times \frac{1}{V_T}$

The Case Study

The Tradeoff Plot:

Closing Remarks

Utility of the tool

- Testing new improvements in model structure
- Testing new spatiotemporal discretization schemes

Advantages

- Provides a unified framework for future model enhancements
- Facilitates communication between different research groups working on different aspects of the model
- Can potentially guide integration of models that operate at different spatial/temporal scales

Acknowledgments

Questions?

Mazdak Arabi Voice: (765) 494-1134 marabi@purdue.edu web.ics.purdue.edu/~marabi