Reaction Kinetics for Modeling Non-Point Source Pollution of Nitrate with SWAT Model

Narula, K.K., and Gosain, A.K Indian Institute of Technology Delhi

4th International SWAT Conference 5th July 2007 Delft (The Netherlands)

Water resources - vital statistics

A Rainfall: 4000 bcm/yr, translates into water resources (~48%), groundwater recharge (~ 11%).

▲ Water consumers - Agriculture (85%); Domestic (4%)

Availability of water per capita (cu.m/ca/year)
World: 6700
North America : > 15,000
India : ~ 1200

-	District	State	Nitrate (mg l ⁻¹)
	Mathura	Uttar Pradesh	279
Groundwater	Aligarh	Uttar Pradesh	270
	Agra	Uttar Pradesh	240
Drinking water quality standard for nitrates: 45 mg l ⁻¹	Mahendragarh	Haryana	1310
	Gurgaon	Haryana	722
	Hisar	Haryana	419
	Ambala	Haryana	419
	Bhatinda	Punjab	567
	Ludhiana	Punjab	265
	Peddavoora	Andhra Pradesh	53

Surface water

Data generated from its 480 river quality monitoring stations, mean nitrate values have increased from 0.4 mg l⁻¹ in 1979 to 2.8 mg l⁻¹ in 2000

Nitrate exceedence frequency i.e., % stations reporting nitrates exceeding the standard, has increased from 2% in 1979 to 10% in the year 2000 (Source: Analysed from datasets published by CPCB, MINARS Series 1979–2001).

Subject area	Data basis	Source and map scale
Basic data	Boundaries of the river basin, administrative boundaries, stream networks	Survey of India (SoI); 1: 50 000
Climatic data	Mean monthly and daily precipitation, maximum and minimum temperature, solar radiation, wind speed, potential evaporation	Indian Meteorological Departme (IMD)
oil-physical data	Soil characterstics (% silt, sand, clay, rocks), field capacity, wilting point, hydraulic conductivity, depth to water table, properties for different soil layers varying with depth	National Bureau of Soil Survey an Land use planning (NBSS& LUP); 1:250 000
Landuse data	Ground cover	SoI, Satellite Imageries, Sta Agricultural Board 1:50 000 and 1:250 000
Hydrogeological lata and groundwater luctuation	Groundwater-bearing lithologic units, transmissivity, hydraulic conductivity, groundwater levels, fluctuations, hydrochemical data, water use (pumping and extraction)	Geological Survey of India (GS. National Thematic Ma Organization (NATMO), CGW SGWB, 1: 250 000
Fopography data	Elevation contours	SoI; 1: 50 000
Gauge data	Daily river flows	Chander et al. (1984), Central Wat Commission, Ministry of Wat Resources
Crop and fertilizer data	Nitrogenous fertilizers use, crop yields and types of crops; gross and net cropped areas	Fertilizer Statistics, Fertiliz Association of India (FAI)
Water quality data	Surface water quality (Nitrate concentrations), ground water quality (nitrate concentrations)	Central Pollution Control Boa (CPCB); State PCB, Station-wi data

Summary of the results

The study has been successful in calibrating and validating the model consisting of the following components,

- ▲ Streamflow
- ▲ Groundwater levels
- ▲ Nitrates in surface water
- The simulated nitrate concentrations show a deviation from the observed values
- The model requires studying nitrate transformation processes in the unsaturated zone of the soil matrix since these have a direct bearing on nitrate transport in surface and groundwater
- Review of various models shows that Michaelis-Menten kinetics, a mixed-order kinetics, is well suited for simulating microbial action and growth under the influence of various environmental conditions and substrate concentration

This aspect has been studied further

Field tests for examining the kinetics

Parameter	Unit	Entisol	Anthrosol
Organic matter	g kg ⁻¹	2.9	11.8
Total N	g kg ⁻¹	0.2	0.8
NH_4+	mg kg ⁻¹	8.2	2.3
NO ₃ -	mg kg ⁻¹	11.5	9.2
pH		8.3	8.1
Water holding capacity	%	22.5	23
Density	g cm ⁻³	1.1	1.2
Particle size distribution			
Sand (2–0.02 mm)	%	68.9	27.5
Silt (0.02–0.002 mm)	%	24.6	49.0
Clay (<0.002 mm)	%	6.5	23.5

Simulation results and comparison of kinetics

Conclusions

Nitrate transport to surface water and groundwater aquifers takes place under the influence of the runoff components of the land phase of the hydrological cycle.

- ▲ The kinetics of nitrate transformation processes namely, nitrification and denitrification, in the land phase of the hydrological cycle determines the transformation and release of nitrates in surface and groundwater aquifers
- ▲ The transformation of nitrates is governed by bacteriological action, which can be best represented by mixed order kinetics i.e., Michaelis Menten Kinetics
- ▲ The comparison of the existing first-order kinetics with the proposed Michaelis-Menten mixed order kinetics indicates that Michaelis-Menten mixed order kinetics represents the nitrate transformation processes better

Limitations of the study

▲ A longer length of record would have been desirable for calibration and validation of various components of the integrated model

Nitrate concentration data for surface water was limited

▲ Fertilizer application data was limited

Future scope of research

The Michaelis-Menten mixed order kinetics has been successfully tested using published experimental datasets. Incorporating it in the SWAT model itself and simulating nitrate transformations could be done in the future

thank you