Identification of point and diffuse sources and role of retention processes in large river basins: comparison of three approaches

Cornelia Hesse, Valentina Krysanova and Fred Hattermann

Potsdam Institute for Climate Impact Research

Outline

- 1. Case study basin: Saale
- 2. Model SWIM
- 3. Three approaches for nutrient retention in large basins
- 4. Step 1: retention in the landscape three pathways
- 5. Step 2: retention in the landscape differentiation of retention coefficients for three pathways
- 6. Conclusions and outlook

Diversity of landscapes in the Elbe basin

Case study basin: Saale

- Second largest tributary of the Elbe
- 👌 Length 413 km
- brainage basin ~ 24000 km²

Case study basin: Saale

SWIM (Soil and Water Integrated Model)

SWIM was developed in PIK (Potsdam) based on SWAT-93 and MATSALU for climate and land use change impact studies

Spatial disaggregation

Soils

Hydrotops are sets of units in subbasins with uniform land use and soils

Land use

Subbasins

From the hydrotope to the basin level

http://www.smhi.se/foretag/m/hbv_demo/

Nutrient retention in watersheds: 3 approaches

Three approaches:

- retention in a landscape is described separately for surface, subsurface and groundwater flows by a linear differential equation (Hattermann et al., 2005) as a function of mean residence time T and decomposition rate λ, with constant T_{sur}, T_{sub}, T_{gw} and λ_{sur}, λ_{sub}, λ_{gw} for the basin;
 the same as in the first approach, but differentiating T = T = and λ = λ = λ = for hydrotopes
 - $\mathsf{T}_{\mathsf{sur}}$, $\mathsf{T}_{\mathsf{sub}}$, T_{gw} and λ_{sur} , λ_{sub} , λ_{gw} for hydrotopes depending on soil properties and g-w conditions; &
- coupling SWIM with the model WASP to additionally describe retention processes in the river network in combination with approaches 1 or 2.

Approach 1: nutrient retention

$$\frac{\partial c}{\partial t} + \frac{\vec{u}}{R} \nabla c - \nabla \left(\frac{Dg}{R} \nabla c\right) - \frac{\sigma}{R} + \lambda c + \frac{q}{mn_f R} (c - c_{in}) = 0$$

c = concentration n = eff. porosity m = aquifer thickness λ = turnover coeff R = faktor of retardation

Simplifications:

- Full mixture during the transport process
- Residence time is normally distributed
- Linear degradation

$$\frac{dC_t}{dt} = C_{t, in} - C_{t, out} - \lambda C_t$$

$$C_{t} = KC_{t,out}$$

$$C_{t,out} = C_{t,in} \frac{1}{1 + K\lambda} (1 - e^{-(1/K + \lambda)t}) + C_{t-1,out} e^{-(1/K + \lambda)t}$$

Classical approach:

the convection-dispersion equation But:

-it is nonlinear and has to be solved numerically

- high data demand

- K = mean residence time,
- λ = decomposition rate,
- C = concentration

Approach 1: The mean residence time

The mean residence time

- K = f (flow path, permeability, porosity, gradient in groundwater table) for subsurface flow
- K = f (flow path, permeability, porosity, and gradient in topography and Manning's roughness) for surface flow.
- The distance L to the river is calculated following the gradient in groundwater table to the river.
- K can be estimated using the seepage velocity v_s (m d⁻¹), where k is hydraulic conductivity of the spatial unit z, J is dimensionless hydraulic gradient, and S is the specific yield (average ~40 years, up to > 1000 years).

Approach 1: The decomposition rate

The decomposition rate λ is a function of redox potential and carbon concentration of the catchment sediments.

Initial values can be established using data from Wendland et al. (1993): a half-life time of nitrate N between 1 and 3 years, which corresponds to λ values between 6.10⁻⁴ d⁻¹ and 2.10⁻³ d⁻¹.

Validation using first approach: water discharge

Validation using first approach: N-NO₃ load

Approach 2: differentiated retention coefficients

Nutrient retention in a landscape is described separately for surface, subsurface and groundwater flows as a function of mean residence time T and decomposition rate λ ,

and T_{sur}, T_{sub}, T_{gw}, λ_{sur} , λ_{sub} , λ_{gw} are differentiated depending on soil properties and g-w conditions.

Estimation of Denitrification conditions in soils of Central Europe

	Soil water nutrients temperature PH TOT				TOTAL	
Bodentyp	Bodenwasser- verhältnisse	Nährsubstrat	Temperatur	pH-Wert	Gesamt- einstufung	•
Podsol	_	_	-	_	_	(
podsolige Braunerde	0	-	-	-	-	Ì
podsolierte Parabraunerde	o	-	-	-	-	
Braunerde (basenarm)	-0	0	-	-	-	
Syrosem	-	-	-	-	-	
Pararendzina	0	0+	+0	+	0	
Rendzina	0	0+	0	+	0	
Braunerde (basenreich)	0	0+	0	0+	0	I
Parabraunerde	0	0+	0	-0+	0	
Pseudogley	+	-	0-	0-	+	
Tschernosem	0+	+	+	+	+	
Pseudogley	+	-0	0-	0-	+	
Gley	+	+		0	+	
Aueböden	+	+	0	+	+	
Marschböden	+	+	0	+0	+	
Niedermoor	+	+	0	+	+	
Hochmoor	+	+	0	-	+	

+ good conditions for D:

gley, pseudogley, loess, marsch, moor, tschernosem

O neutral conditions for D:

brown soils, parabrown soils, rendzina, pararendzina

— poor conditions for D:

podsol, podsol-brown soils, syrosem

Wendland et al. Atlas zum Nitratstrom in der Bundesrepublik Deutschland

Denitrification conditions in soils, Germany

Conclusions and outlook

Water quality modelling in large river basins should include consideration of retention processes on the way to river network.

The **I hypothesis** to be proved: in large river basins the residence time and decomposition rate should be differentiated based on soil properties and groundwater conditions.

The **II hypothesis** to be proved: in large river basins description of nutrient retention processes in river (e.g. coupling SWIM with WASP or QUAL2E) is needed to better represent water quality.