

Toward an Improvement of the Hydrological Performance of the SWAT Model under Snow Cover and during Snowmelt

Étienne Lévesque, Nicolas Beauchamp

gEAU, Université Laval, Québec, Canada

Ann van Griensven UNESCO-IHE, Delft, The Netherlands

Peter A. Vanrolleghem, François Anctil gEAU, Université Laval, Québec, Canada

SWAT2007 Workshop, Delft, July 5th 2007

Winter season dynamics

- November to May (up to 7 months)
- Snow accumulation
 - □ Subfreezing air temperature
 - Low water level period
 - Minimum effluent dilution
- Snowmelt
 - Lasts 2 to 4 weeks
 - □ May combine with rainfalls
 - Generally leads to the most important flood of the year

Winter season dynamics

Assess the required refinement level of the SWAT snow model

Enhance water quantity and water quality simulations

- The spring flood associated to the snowmelt largely contributes to the sediment and the annual nutrient loads
- Accurate modeling of the flow paths
 Getting the right answers for the right reasons!

Experimental protocol

Model

□ SWAT release 2005

Sensitivity analysis

- Latin Hypercube
 - One-at-the-time

Automatic calibration

Shuffled Complex Evolution Algorithm – SCE-UA

Ruisseau Portage

21,41 km²
5 subbassins

- 16 % \rightarrow Agriculture
- 27 % → Pasture

Winter hydrologic yield

A → 1999 - 2002
B → 2002 - 2005

<i>r</i> =	$\sum_{i=1}^{n} Q_i$
	$\sum_{i=1}^{n} P_i$

Winter	Obs	A→B	B→A
1999-00	0.8226	0.6759	0.6606
2000-01	0.8646	0.6696	0.6810
2001-02	N/A	0.5590	0.5879
2002-03	0.9215	0.6233	0.6339
2003-04	0.6806	0.7318	0.7573
2004-05	0.8320	0.6388	0.6477
	1		

- In the observations
 - Stream flows
 - The river ice cover leads to stream flow overestimation
 - Reduces the flow section
 - □ Amplifies the pressure within the water column
 - Are manually corrected by experienced staff
 - □ Reduced by a factor up to 20 or more !

Precipitation climatology

In the forcing inputs

- Precipitation
 - Snowfall is manually observed
 - But the snow ratio is assumed equal to 10
 - Snow ratio associated with average and light snow dominates the snow ratio distribution

- In the snow model structure
 - □ Accumulation and aging of the snow cover
 - □ Simulation of the snow cover depletion
 - Simulation of the melt rate
 - □ Routing of the melt event

22

Model snow interception processes and melt rates according to the HRU

- Presence of a forest canopy strongly influences absorption and reflection of incoming solar radiation
- Presence of a forest canopy affects wind and therefore heat exchange, leading to lower snow melt rates

Refine soil temperature model in order to include heat exchange while water freezes/melts

- Soil is frozen 2-3 weeks after major melt related flood event
- Inclusion of a frozen soil temperature model will modify :
 - $\hfill\square$ flow paths of water
 - □ soil water content after the snowmelt,
 - □ but not the yield of water that is routed down into the river
- Model the three phases system air-water-solid in the soil reservoir

Revise how free water is managed in the soil reservoir for subfreezing soil temperatures

- The spatial distribution of frozen soil is highly variable: there is always water that will find its way to recharge the shallow aquifer
- Allow free liquid water to percolate and/or to become subsurface flow under soil subfreezing temperatures
- These changes will enhance low water level stream flow simulations in winter

- Perform shallow groundwater monitoring in order to model the transmissivity feedback mechanism (i.e. groundwater rise pushes subsurface "old" water out), and the favoured flow paths during the snowmelt period
- Question how the groundwater system is divided, more specifically the inclusion of a deep groundwater zone to which all recharges are considered as a loss
- Perform an albedo follow up (now: constant = 0.8 fresh) using a prognostic scheme including forest canopy (= 0.3) specificities => better description of sublimation process

