

Integrated Modeling of Surface Water and Groundwater by Using Combined SWAT-MODFLOW

N. W. Kim*, I. M. Chung*, Y. S. Won**, J. Lee*, J. G. Arnold***

* Korea Institute of Construction Technology **River Information Center of Han River Flood Control Office *** USDA-Agricultural Research Service

21C Frontier R&D Program Sustainable Water Resources Research Center

Content

- Background and Purpose
- Overview of SWAT-K and SWAT-MODFLOW
- Application to test watersheds
- Results of simulation
- Conclusion

- Current issues on water management in Korea :
- Water rights (and regulations) on groundwater use near streams
- **Accurate estimation of groundwater recharge / discharge**
- Potential amount of groundwater development based on groundwater recharge
- ✓ Groundwater is an alternative water resources in Korea

BACKGROUND

Problems

SWAT

- Hydrologic component analysis in Korea has concentrated on surface water management, so problems related to groundwater were not dealt with rigorously
 - In groundwater modelling, groundwater recharge could not be considered in terms of hydrological processes
 - The role of groundwater model in surface water management was less significant

- Construction of a long term rainfall runoff model, producing integrated analysis for both the groundwater and surface water
- To explain the effects of spatial-temporal distributions of recharge and groundwater head
- To examine the hydrological effects allowing hydraulic interaction between surface water and groundwater
- Application to <u>Underground dam / River intake /</u> <u>Reservoir capacity/ Potential amount of groundwater</u> <u>development / Stream flow decrease in urbanized</u> <u>watershed</u>

Technological Roadmap

Fully combined SWAT-MODFLOW

- Development of tool for exchanging characteristics between HRU(Hydrologic Response Unit) of SWAT and CELL of MODFLOW
- ✓ Groundwater module in SWAT is replaced by MODFLOW
- Spatially distributed GW recharge rates and heads can be simulated by SWAT-MODFLOW
- Stream-aquifer interactions by RIVER package in MODFLOW

SWAT

* This approach is quite different to the method used by Sophocleous et al.(1997) which involves separate modelling by sequential linkages.

SWAT

SWAT WORKSHOPS & CONFERENCE 2007

Fully coupled work by Serial linkage

- Major input data for SWAT-MODFLOW
 - ✓ HRU distribution which links HRU with MODFLOW grids
 - ✓ Cell based recharge rate which is made by HRU based in SWAT
- ✓ Stream data(stage, width) is common to both model
- Data for water transfer of shallow aquifer in SWAT is commonly used in WELL package in MODFLOW

SWAT

SWAT WORKSHOPS & CONFERENCE 2007

SWAT-MODFLOW

CONSTRUCTION TECHNOLOGY

Linking RECHARGE in MODFLOW with SWAT

SWAT WORKSHOPS & CONFERENCE 2007

SWAT-MODFLOW

Linking RIVER in MODFLOW with SWAT Stream inflow in SWAT =discharge in small watershed +SW & GW exchange(23)

Runoff Process

• Behavior of hydrological components in single HRU

SWAT WORKSHOPS & CONFERENCE

2007

SWAT WORKSHOPS & CONFERENCE 2007

Enhancement of recharge parameter estimation for vadose zone modeling

$$w_{rchrg,i} = (1 - \exp[-1/\delta_{gw}]) w_{seep} + \exp[-1/\delta_{gw}] w_{rchrg,i-1}$$

$$W_{rchrg,i}$$
 : recharge from soil zone to aquifer (mm)

$$\delta_{gw}$$
 : delay parameter (day)

 w_{seep} : amount of water exiting the bottom of soil profile (mm)

Single linear reservoir

Enhancement of water transfer in SWAT-MODFLOW

✓ In SWAT's water transfer option, when the source type is aquifer, then this case is related with Well package in MODFLOW

✓ Water transfer rate in HRU is correspondent to pumping rate Q (discharge or recharge)

APPLICATION

The characteristics of subbasins

Number	Area	Length	Slope	Width
	(km²)	(km)	(m/m)	(m)
1	16.91	8.226	0.043	7.038
2	29.38	10.322	0.050	9.833
3	47.44	15.194	0.017	13.070
4	59.29	19.446	0.026	14.941
5	6.96	5.484	0.067	4.132
6	20.01	8.295	0.039	7.789
7	38.74	12.809	0.025	11.575
8	22.62	12.264	0.029	8.380
9	17.68	10.167	0.030	7.229

Input data for SWAT

✓AVS2000 (DiLuzio et al., 2001) was used to automate the construction of model input parameters

✓ Daily precipitation of Suwon gauging station (MOCT)

✓ Daily values of temperatures, solar radiation, wind speed etc.(KMA)

✓ Land use digital data(1:25,000) (MOCT)

✓ The detailed soil association map(1:25,000) was used for selection of soil attributes. 38 hydrologic soil groups within basin were used.

✓ Related soil physical properties (texture, bulk density, available water capacity, saturated hydraulic conductivity, soil albedo and some additional factors) were obtained from the Agricultural Soil Information System (http://asis.rda.go.kr)

Sustainable Water Resources Research Center

APPLICATION

Input data for MODFLOW

- ✓ GW information from GIMS(<u>http://www.gims.go.kr</u>) was used
 - Hydraulic conductivity in alluvial aquifer : 2.1×10⁻³cm/sec.
 - Specific yield ranges from 0.1 to 0.3.
- \checkmark The boundaries of basin were designated as no-flow cells.
- \checkmark Recharge was distributed according to SWAT simulation outputs for each day
- ✓ River stage of MODFLOW is imported from SWAT's daily simulation outputs

RESULTS

Model calibration (R²=0.79)

Model validation (R²=0.66/ME=0.65)

RESULTS

21C Frontier R&D Program Sustainable Water Resources Research Center

SWAT

WORKSHOPS & CONFERENCE

24

KOREA INSTITUTE OF CONSTRUCTION TECHNOLOGY

Groundwater level variation near stream

River aquifer interaction

SWAT

A'

RESULTS

Application of SWAT-MODFLOW pumping module

MUSIM WATERSHED

CONSTRUCTION TECHNOLOGY

SWAT

MUSIM WATERSHED

• Spatial information

SWAT

ustainable Water Resources Research Center

RECHARGE SIMULATION

• Recharge according to time delay(Gaduk obsevatory)

SWAT

RECHARGE SIMULATION

• Simulated recharge and measured groundwater level (Naeduk)

SWAT

RECHARGE SIMULATION

• Simulated recharge and measured groundwater level (Gaduk)

SWAT

21C Frontier R&D Program
Sustainable Water Resources Research Center

CONSTRUCTION TECHNOLOGY

GROUNDWATER SIMULATION

CONSTRUCTION TECHNOLOGY

- **Groundwater head simulation**
 - R²=0.95

SWAT

RECHARGE DISTRIBUTION

Distributed recharge (mm)

SWAT WORKSHOPS & CONFERENCE

2007

Recharge(Aug. 2002)

44

RECHARGE DISTRIBUTION

Distributed recharge (mm)

SWAT WORKSHOPS & CONFERENCE

2007

0 - 15

15 - 30

30 - 45

45 - 60

60 - 75

75 - 90

90 - 105

105 - 120

120 - 135

135 - 150

150 - 165

✓ Potential application of combined SWAT-MODFLOW model in simulating groundwater recharge and level is demonstrated

✓ The combined models are also capable of reflecting riveraquifer exchange rate properly

✓ The reliability of groundwater discharge and total runoff of watershed is enhanced

✓ Application to planning of groundwater development / underground dam operation / river intake etc.

✓ For larger watershed, application of SWAT-MODFLOW is limited due to the limitation of MODFLOW

1st SWAT-KOREA Conference

7 Nov. 2006 / Venue : Main hall of KICT, Ilsan

SWAT

1st SWAT-KOREA Conference

SWAT WORKSHOPS & CONFERENCE 2007

Staffs/Presenters

1st SWAT-KOREA Conference

SWAT WORKSHOPS & CONFERENCE 2007

Participants

INTERNATIONAL ACTIVITIES

SWAT WORKSHOPS & CONFERENCE 2007

Thank you

The authors express thanks for a grant (code: 2-2-2) from the Sustainable Water Resources Research Center of the 21st Century Frontier Research Program.

