DEFINITION of HRU using Area Fraction Images derived from Spectral Unmixing 4th International SWAT Conference 6th July 2007 Delft, The Netherlands

Outline

- 1. Assessing area fractions of land use classes by means of spectral unmixing of low-cost LR multi-spectral images
 - Linear spectral unmixing
 - Data
 - Results
- 2. Definition of HRU using area fraction data of land use classes
 - Downscaling of soil data
 - Upscaling of area fraction data

Study Area

Linear Spectral Unmixing

End-member estimation

Assessment of Land use Area Fractions

Y N. Zhu, J. Van Orshoven and B. Bossyns

Multiple end-member spectral mixture analysis

$$R_k = \sum_{i=1}^M f_i p_{i,k} + e_k$$

 The modeled fractions are typically constrained

$$\sum_{i=1}^{m} f_i = 1 \quad and \quad 0 \le f_i \le 1$$

- $\mathbf{R}_{\mathbf{k}}$ is the pixel reflectance for band \mathbf{k}
- **M** is the number of end-members
- **f**_i is the area fraction of end-member **i**
- *p_{i,k}* is the reflectance of end-member **i** at band *k*
- e_k is the residual term at band **k**

For an image • Simplified: $R = FP + \mathcal{E}$

Determination of End-member spectra: Reversed Linear Unmixing

- *P* is the matrix of Endmember spectra
- $P = (F^T F)^{-1} F^T R$
- **F** is the matrix of known End-member fractions
- **R** is the matrix of input reflectance values

DATA:

Low resolution multi-spectral imagery to be unmixed

- SPOT VGT 10 day composite, 4 spectral bands (Blue, Red, NIR and SWIR), year 2001, spatial resolution 1 km²
 - Summer & winter totally 13 images selected
- MNF (Minimum Noise Fraction) transformation performed to reduce the noise and decrease the dimensionality of data
 - The 4th band (SWIR) was not used

RED (R), ON ARTED, and BOVIR (B) DASIES OF MALE deals for mation 2001 shows the SWIR pixel contamination in blue strips

Data: Known end-member fractions Derived from reference area fraction images

- All the pixels of study area for which area fraction sum up equal to 100% (10416 pixels of 14310 pixels, 72.98%)
- 2. Sample of 1 pixel out of each 5 × 5 pixels. Total number of pixels = 416, 2.91% of all pixels

Reference Area Fraction data: Sealed class

Estimated Sealed Area Fractions

End-member estimated by all pixels

End-member estimated by 5 pixels interval

End-member estimation method	RMSE				Abs	
	Per Pixel (%)	Per Municipality (km²)	Per Municipality (%)	Sealed Area (km ²)	Difference vs. Reference(km ²)	Difference with reference (%)
Pixels of all study area	16.77	4.85	11.61	2020.54	3.42	0.17
Systematical ly 5pixels interval	16.87	4.91	11.84	2116.46	92.50	4.57
Reference: Sealed area 2023.96 km Y N. Zhu, J. Van Orshoven and B. Bossyns						

High : 100.00%

Low : 0.00%

Municipalities Flander

How to combine AFI and a soil map to generate HRU?

Downscale soil map information towards the resolution of the AFI

Upscale the AFI to the resolution of the soil map

Conclusion

- The accuracy of the AFI obtained for the sealed land use class are too low for operational use.
- The spatial distribution of the sealed areas is not well captured due to the too coarse spatial resolution of the SPOT-VGT-sensor, the too limited spectral information used (blue, red and near infrared-bands only) and the MNF-transformation possibly violating the assumption of linear mixture (Lobell and Asner, 2004).
- Possibilities for combining land use AFI with soil information have been identified but remain to be functionally evaluated

Future work

- Use of middle resolution imagery, e.g. TERRA-MODIS (250 m * 250 m and 500 m * 500 m), ENVISAT-MERIS (300 m * 300 m);
- Use of more spectral bands;
- Use of one summer and one winter image only so that MNF-transformation would no longer be required;
- Use of alternative unmixing methods. For agricultural land use ANN seem to be most promising in this respect (Verbeiren et al., in press).
- Evaluation of combination of AFI with soil map to generate HRU Y N. Zhu, J. Van Orshoven and B. Bossyns

THANKS

