IMPACT OF LAND USE/COVER CHANGES ON STREAMFLOW: THE CASE OF HARE RIVER WATERSHED, ETHIOPIA

Kassa Tadele and Gerd Foerch University of Siegen

Presentation outline

- 1. Introduction
 - Study area
 - Objective
- 2. Methodology
 - ✤ Model setup
 - Existing watershed practices
- 3. Results
 - Land use dynamics
 - Model evaluation
 - Seasonal Streamflow variability
 - ✤ Downstream impacts
- 4. Conclusions

1. Introduction

1.1 Study area

<figure>

Hare Watershed

1.2 Objectives of the study

- Examine the extent of past and present land use/cover dynamics and analyse their implications on streamflow at a watershed and sub-watershed levels
- Analyse the seasonal streamflow variability and understand the upstream-downstream linkages with respect to irrigation water use

2. Methodology

2.1) Model setupI) DEM and stream network

- A DEM was derived from digital contour lines
- A stream network was digitized from top map
- 15 sub-watersheds and 92 HRUs were created

II) Meteorological Data

- To establish elevationrainfall relation, 15 weather stations,
- Elevation bands were developed in SWAT to account for orographic effect of PCP

III) Soil data

Sample locations identified (random sampling)

 Sample were taken to determine physical & chemical parameters

 Soil polygons were developed for the point location samples

Soil sampling and analysis

IV) Land use/cover mapping

- Spatial databases were developed using aerial photographs (1967 &1975), satellite image (2004) and intensive on field land use mapping (2005)
- Hybrid of automated classification (supervised classification based on maximum livelihood approach) and visual interpretation (based on tone, texture, proximity) was adopted
- post-classification comparison method

V) Streamflow data

Observed daily streamflow (1980 – 2005) at the outlet of the watershed

2.2) Existing watershed practices a) Downstream practices

✤ 3 diversions to irrigate 2224 ha (depend on daily streamflow)

b) Upstream practices

...Cont'd

 Farmlands increased mostly associated with a decrease in forest cover

Sub-watersheds adjacent to villages more affected

I) Sensitivity Analysis (SA)

✤ 8 most crucial parameters

Curve number (CN), Soil Available Water Capacity (SOL_AWC), Soil depth (SOL_Z), Soil Evaporation Compensation factor (ESCO), Saturated hydraulic conductivity (SOL_K), Slope (SLOPE), Groundwater "revap" coefficient (GW_REVAP) and Groundwater recession factor (ALPHA_BF)

II) Calibration and validation

	1975 land use/cover map				2004 land use/cover map			
Index	Calibration (1980-85)		Validation (1986-91)		Calibration (1992-97)		Validation (1998-04)	
	Daily	Mon.	Daily	Mon.	Daily	Mon.	Daily	Mon.
Coef. dete(R ²)	0.63	0.72	0.52	0. 55	0.71	0.85	0.62	0.71
N-S coeff. (E)	0.52	0.63	0.43	0.45	0.62	0.82	0.58	0.67

3.3 Seasonal streamflow variability (1992-2004)

	Farmland & settlement	Mean monthly flow change (%)			
sub-watersheds	class change (%)	Wet season (MarMay)	Dry season (NovFeb.)		
11	+ 5.1	+ 7.1	- 13.8		
13	+ 12.8	+ 8.1	- 26.9		
4	+ 18.2	+ 11.6	- 31.8		
2	+ 18.8	+ 13.3	- 39.6		
15	+ 18.9	+ 11,7	- 43,3		
Entire WS	+ 10.4	+ 12.5	-30.5		

3.4 Downstream impacts on irrigation project

Irrigation water
demand at the intakes
was computed

 Water deficit & surplus periods for irrigation were determined

Irrrigation water deficit and surplus periods

4. Conclusions

Hare watershed had experienced land use/cover dynamics during the past four decades

Model performance assessment verified that the model simulation results are dependable and SWAT can be utilized in similar watersheds

- Simulation results illustrated that land use/cover dynamics has had significant impacts on streamflow
 - at present Hare River only satisfies 15.75% of downstream irrigation water demand

