Linking the economic costs and water quality benefits of conservation in agricultural lands: an Iowa assessment

Philip W. Gassman, Silvia Secchi, Manoj K. Jha, Lyubov A. Kurkalova, Hong-Li H. Feng, and Catherine L. Kling Resources and Environmental Policy Division Center for Agricultural and Rural Development (CARD) Iowa State University, Ames, IA

Presentation Overview

- Background on USEPA Clean Watersheds Needs Survey (2000)
- Brief overview of Iowa Agriculture
- Describe modeling framework
 - SWAT calibration / validation
 - conservation practice algorithm / scenarios
- SWAT assumptions & results
- Cost assumptions & results
- Conclusions & USEPA reaction

USEPA Clean Watersheds Needs Survey (CWNS)

- Conducted about every four years
 required under section 516 of the Clean Water Act
- Document needs eligible for Clean Water State Revolving Fund (CWSRF)
- 2000 "documented needs": ~\$181 billion
 - waste treatment plants, etc.: \$167 billion
 - diffuse sources: \$14 billion

- agricultural cropland: \$0.5 billion

USEPA CWNS

- Simulated national "gap estimates" for agricultural cropland
- Total U.S. estimate: \$4.4 billion
 - buffers, nutrient management, conservation tillage, and CRP
 - acknowledge other practices may be needed

lowa Assessment

- Iowa Dept. of Natural Resources (IDNR)
 requested statewide "nonpoint source pollution needs assessment"
 - conviction: 2000 USEPA national cropland diffuse pollution estimates were way too low
 - goal: submit cropland diffuse pollution cost estimates to 2004 CWNS

U.S. corn production (million bushels) by county

2002 Iowa Landuse Map

Iowa Crop Production

2004 planted corn area = 5.14 (10⁶) ha; harvested area = 5.02 (10⁶) ha
\$3.71 billion in total sales

 2004 soybean area = 4.13 (10⁶) ha; harvested area = 4.11 (10⁶) ha
 <u>\$2.60 billion in total sales</u>

2003 Iowa Crop Rankings

Crop	Rank	% of U.S. Total
Corn (grain)	1	17
Corn (silage)	7	5
Soybeans	1	15
Oats	6	6
Winter Wheat	38	
Alfalfa Hay & Mixtures	7	6
Total area of principal crops harvested	1	8

A lot of Nutrients

 Average nitrogen fertilizer application rate on corn =140-150 kg/ha
 - > 700 (10⁶) kg annually

- Phosphorus fertilizer also applied to corn
- Also significant nitrogen and phosphorus input from livestock manure

Simulation Framework

- SWAT model (environmental impacts)
- USDA 1997 National Resources Inventory (NRI) database & other data
- Conservation practice algorithm / scenarios
- Conservation practice cost data

Discrete choice economic models

NRI Database and other Data

- National Resources Inventory (NRI)
 - USDA-NRCS national statistical survey (~800,000 "points")
 - collected every 5 years between 1982-97 (used 1997 data)
 - comprehensive cropping history (rotations) and other landuse data
 - baseline conservation practices; soil types, other data
- Obtained tillage practice and other management data from other USDA surveys
- Climate and soil data from other sources

13 Watersheds Simulated in SWAT for IDNR Study (cover 87% of Iowa)

Watershed Characteristics

Watershed	# of NRI	Drainage	# of	Key Land Uses (%)			
Name	cropland points	area (km²)	subwatersheds	Cropland	Grassland		
Floyd	373	2,376	5	84	13		
Monona	231	2,452	5	78	19		
Little Sioux	811	9,203	10	86	13		
Boyer	298	2,820	5	68	26		
Nishnabotna	766	7,718	11	84	15		
Nodaway	186	2,051	7	52	41		
Des Moines	2942	37,496	9	71	16		
Skunk	1022	11,246	12	69	25		
Iowa	3374	32,796	9	77	12		
Wapsipinicon	789	6,582	11	77	19		
Maquoketa	503	4,827	10	56	32		
Turkey	410	4,400	9	56	25		
Upper Iowa	164	2,569	7	51	26		

NO₃-N Concentrations in the Racoon River (Five Year Running Average of May measurements)

Des Moines Water Works

- Raccoon River water is preferred source
- Supplies drinking water for 350,000 people

Nitrate Removal Facility

• On average, MCL for Nitrate is exceeded 100 days per year.

• Operating removal facility increases cost of water treatment.

SWAT Calibration/Validation

- Manual calibration (baseline NRI data)
 - streamflow, sediment, and nitrate
 - calibration period: 1981-89
 - validation period: 1990-2000 for flow and nitrate; 1990-94 for sediment
- Streamflow calibration and validation were also performed for each of the 13 study watersheds (not shown)

Effects of Tile Drainage on Soil Water

Streamflow Results for Raccoon River Watershed

Sediment Results for Raccoon River Watershed

45000 Measured Simulated 40000 R² = 0.77 $R^2 = 0.92$ 35000 E = 0.82 E = 0.70 Nitrate (Metric tons) 30000 25000 20000 15000 10000 5000 0 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 14000 Simulated Measured -12000 Nitrate (Metric tons) $R^2 = 0.79$ $R^2 = 0.78$ 10000 E = 0.75E = 0.758000 6000 4000 2000 0

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Nitrate Results for Raccoon River Watershed

Ok, Let's Fix Iowa's Water Quality Problems

IDNR's original concept:
iterative simulations until water quality targets met
slight problem with this
no one knew what those targets should be

 Plan B: simulate aggregate impacts of expanding conservation practices using a simple algorithm

Conservation Practice Scenarios

- Core set of five practices: land set aside, terraces, contouring, grassed waterways, and conservation tillage
 land set aside: first look at NRI distance to stream; mainly determined as a function of the NRI Erosion Index (EI)
 other practices: function of % slope
- Scenario 1: all practices simulated simultaneously
- Scenario 2: same as scenario 1 except that a 10% fertilizer reduction was added

- did not account for manure applications or more rigorous fertilizer management scenarios

 Also ignored other options such as riparian zones, infield buffers, and wetlands

Step 1. Retire all land within 30 m of a waterway; place it in perennial grass.

Step 2. Retire additional land to until 10% of all cropland in the state is in land set aside, based the NRI EI (again in perennial grass).

Step 3. For the cropland remaining, terrace all cropland with slopes above 7% in western lowa and above 5% for the remainder of lowa.

Step 4. For all remaining cropland, place acreage with slopes above 4% in contour farming.

Step 5. Install grassed waterways on remaining cropland with slopes greater than 2%.

Step 6. For all cropland with slopes ≥
2% (and not in land set aside), place
20% in no till and 80% in mulch tillage.
mulch tillage ≥ 30% residue
no till ≥ 60% residue

Step 7. Nutrient management: 10% reduction in N and P fertilizer rates on all corn acres.

Existing (Baseline) and New Areas of each Conservation Practice for all of Iowa

SWAT Scenario Simulations

- Two simulation sets for scenarios 1 and 2
- 20-year simulations using 1981-2000 climate data
- Results: % changes in average annual values relative to the baseline
 -indicators: sediment, total P, total N, nitrate

	Terrace P-factor	0.12	0.1	0.1	0.12	0.14	0.16	0.18			
	Slope range	1 to 2	3 to 5	6 to 8	9 to 12	13 to 16	17 to 20	21 to 25		111	
17											A CONTRACTOR
K	Contouring P-factor	0.6	0.5	0.5	0.6	0.7	0.8	0.9			State of the second second
K	Slope range	1 to 2	3 to 5	6 to 8	9 to 12	13 to 16	17 to 20	21 to 25			「ない」というというようと
	×			<u>/</u>	7					1	

% Reductions in Sediment & Total P (Same impact for both scenarios)

Watershed	Sediment	Total P	Total P
		(scenario I)	(scenario Z)
Floyd	30	51	52
Monona	11	41	42
Little Sioux	6	48	49
Boyer	35	53	53
Nishnabotna	43	51	52
Nodaway	45	45	45
Des Moines	10	37	37
Skunk	63	51	51
lowa	14	47	48
Wapsipinicon	64	49	50
Maquoketa	47	55	56
Turkey	65	58	59
Upper Iowa	50	27	28

% Reductions in Nitrate

Watershed	Scenario 1	Scenario 2
Floyd	-1	13
Monona	2	17
Little Sioux	2	11
Boyer	4	16
Nishnabotna	13	20
Nodaway	6	11
Des Moines	-5	6
Skunk	5	13
lowa	-5	6
Wapsipinicon	1	9
Maquoketa	-6	9
Turkey	-3	10
Upper Iowa	1	10

% Reductions in Total N

Watershed	Scenario 1	Scenario 2
Floyd	9	20
Monona	8	20
Little Sioux	7	15
Boyer	19	27
Nishnabotna	25	30
Nodaway	17	22
Des Moines	14	20
Skunk	12	19
lowa	23	29
Wapsipinicon	6	14
Maquoketa	6	19
Turkey	8	19
Upper Iowa	10	17

Program Cost Estimates

- IDNR desired that costs be expressed as "program costs" in terms of net present value -annualized costs also calculated (not shown)
- Phased-in over 10-year period
 - considered a reasonable representation of an actual program
- Costs computed for both existing and new practices (unlikely existing would be included)

Costs of Practices

 Land set aside were estimated based on typical land rental costs in Iowa (simulated estimates)

 Conservation tillage: fixed costs - \$24.7/ha for no till and \$49.4/ha for mulch till

Nutrient management: assumed that producers incur one-time cost of \$37/ha

 also assumed that 10% N reduction would have a negligible effect on corn yields

