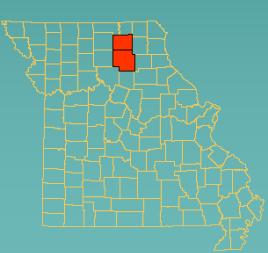
Potential accuracy of water quality estimates based on non-calibrated SWAT simulations

Claire Baffaut D. Todd Farrand, Verel W. Benson

Food and Agricultural Policy Research Institute

The Reality of Model Calibration

- Most parameters have a suggested range of values, not one definite value.
- Their final value is determined during the calibration process by comparing measured and simulated flow values and pollutant concentrations.
- Flow and water quality data are not always available.
- Crop yields are estimated for all U.S. counties.


Question

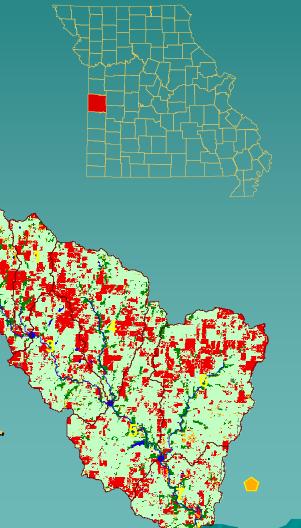
Can we use SWAT to evaluate BMPs impacts at the watershed level when few data are available to calibrate the model?

Long Branch Watershed

Grassland
Crop land
Forest

39% ◆ 271 km2
 29% ◆ 17% ground water
 27% ◆ Average annual flow: 0.56 m3/s

Flow Gage
 Weather Gage
 Streams
 Subbasins
 Subbasins
 watLandUseClass
 Crop land
 Grasslands
 Urban
 Water
 Forest


Miami Creek Watershed

Grassland 66%
Crop land 26%
Forest 8%

→ 350 km2

Average annual^{*} flow: 0.90 m3/s

♦ 13 % ground water

Process

 Develop a model with SWAT2000 using best estimates of parameter values.

- Yield calibration based on crop yields and regional runoff values.
- Run alternatives.

Calibrate the model with flow data.

Run alternatives again.

Comparisons

 Compare stream loadings from the yield and flow calibrated models.

 Compare load reductions from alternative management with both models.

 Compare concentration reductions from alternative management with both models.

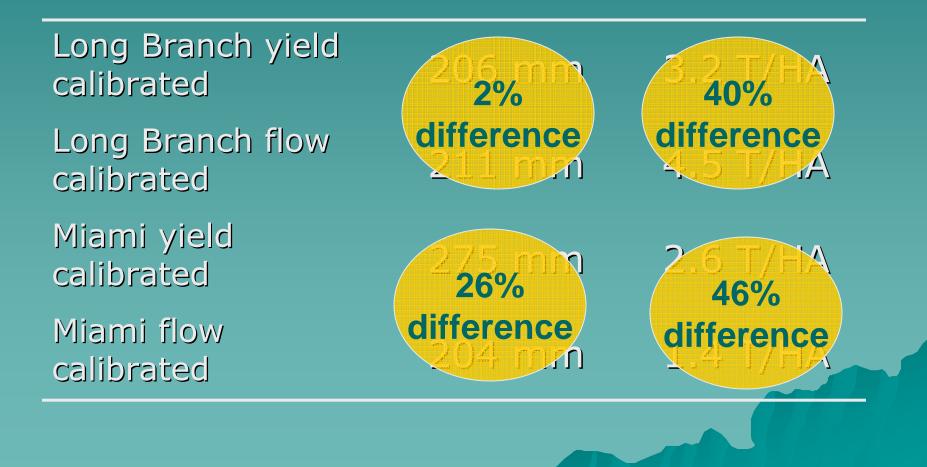
Data Sources

♦ 30 m grid Digital Elevation Map 30 m grid soil map Soil survey (SSURGO) data for soil characteristics \diamond 30 m grid land use map (MoRAP) Stakeholder information for crop rotations and crop management Missouri Agricultural statistics for annual county crop yields from 92 to 2000 Regional flow data

Yield Calibration

 Curve numbers ♦ ESCO Soil characteristics (Ks, BD, AWC) Groundwater parameters (REVAP) and GWQMIN) Match average crop yields Match average total flow estimate based on downstream flow values and watershed size

Flow Calibration

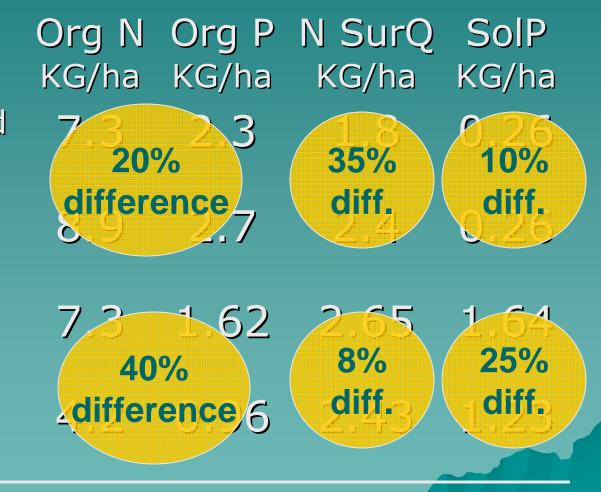

Previous parameters Groundwater alpha_bf Groundwater delay Snow melt parameters Soil crack potential Surface runoff storage parameter (SURLAG)

Model Fit

	% error surf Q	% error GW	% error total Q	Monthly Nash- Sutcliffe
Long Branch yield calibrated	-26%	65%	-7%	0.78
Long Branch flow calibrated	-8%	45%	6%	0.93
Miami yield calibrated	9%	-24%	6%	0.56
Miami flow calibrated	-4%	7 %	1%	0.62

30-year Loadings to the Stream

Water yield Sediment


30-year Nutrients to the Stream

Long Branch yield calibrated

Long Branch flow calibrated

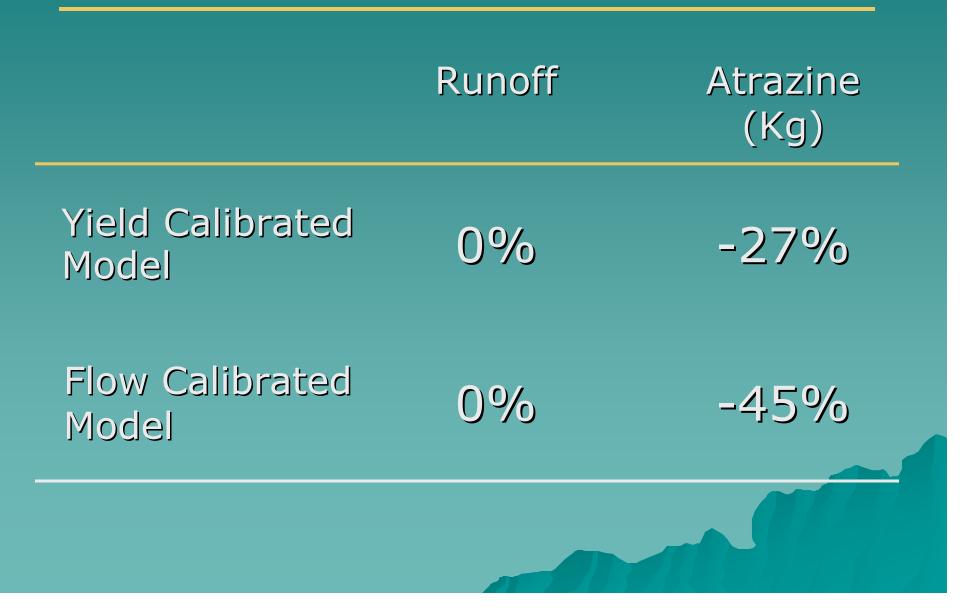
Miami yield calibrated

Miami flow calibrated

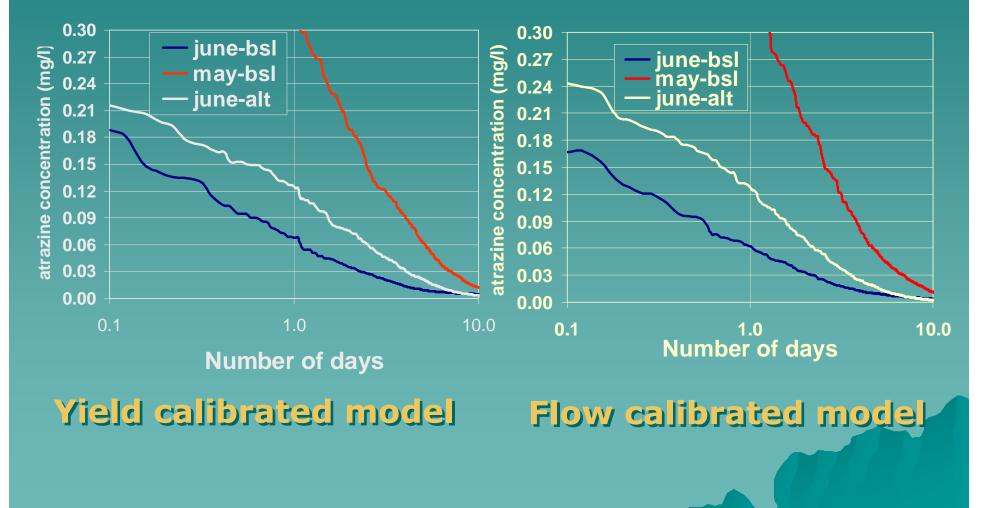
Alternative Practices

Miami

 No-till practices on soybeans and wheat: Tillage operations before and during soybeans and wheat growth are removed, residue cover is increased, and soil properties are left the same.


Long Branch

 Two-pass herbicide application:
 Frontier is applied at planting, and a reduced atrazine application (50%) is applied in June.


Load Reductions in Miami Creek

	Sediment (Tons)	Total N (Tons)	Total P (Tons)	
Yield Calibrated Model	-16%	-7%	+12%	
Flow Calibrated Model	-14%	-6%	+14%	

Load Reductions in Long Branch

Concentration Reductions in Long Branch

Conclusions

 Absolute results are different between the yield and flow calibrated models.

 Load reductions were similar when the BMP did not introduce a timing effect.

 Load reductions were different when the practice did introduce a timing effect.

Concentration reductions were similar.

Recommendations

- Calibrate with flow and water quality data when available.
- Based on these results, a yield calibrated model can be adequate to estimate the impact of practices that are not season related.

 In the absence of calibration data, a SWAT model may still be the best option to estimate the impact.